L(s) = 1 | − 6·7-s − 3·9-s + 19-s + 3·25-s + 2·43-s + 13·49-s + 14·61-s + 18·63-s − 6·73-s + 9·81-s + 15·121-s + 127-s + 131-s − 6·133-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 22·169-s − 3·171-s + 173-s − 18·175-s + 179-s + 181-s + ⋯ |
L(s) = 1 | − 2.26·7-s − 9-s + 0.229·19-s + 3/5·25-s + 0.304·43-s + 13/7·49-s + 1.79·61-s + 2.26·63-s − 0.702·73-s + 81-s + 1.36·121-s + 0.0887·127-s + 0.0873·131-s − 0.520·133-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 1.69·169-s − 0.229·171-s + 0.0760·173-s − 1.36·175-s + 0.0747·179-s + 0.0743·181-s + ⋯ |
Λ(s)=(=(987696s/2ΓC(s)2L(s)−Λ(2−s)
Λ(s)=(=(987696s/2ΓC(s+1/2)2L(s)−Λ(1−s)
Degree: |
4 |
Conductor: |
987696
= 24⋅32⋅193
|
Sign: |
−1
|
Analytic conductor: |
62.9763 |
Root analytic conductor: |
2.81704 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
1
|
Selberg data: |
(4, 987696, ( :1/2,1/2), −1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C2 | 1+pT2 |
| 19 | C1 | 1−T |
good | 5 | C22 | 1−3T2+p2T4 |
| 7 | C2 | (1+3T+pT2)2 |
| 11 | C22 | 1−15T2+p2T4 |
| 13 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 17 | C22 | 1+29T2+p2T4 |
| 23 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 29 | C22 | 1+30T2+p2T4 |
| 31 | C2 | (1−10T+pT2)(1+10T+pT2) |
| 37 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 41 | C22 | 1−30T2+p2T4 |
| 43 | C2 | (1−T+pT2)2 |
| 47 | C22 | 1−87T2+p2T4 |
| 53 | C22 | 1+78T2+p2T4 |
| 59 | C2 | (1+pT2)2 |
| 61 | C2 | (1−7T+pT2)2 |
| 67 | C2 | (1−12T+pT2)(1+12T+pT2) |
| 71 | C22 | 1+30T2+p2T4 |
| 73 | C2 | (1+3T+pT2)2 |
| 79 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 83 | C22 | 1+86T2+p2T4 |
| 89 | C22 | 1−74T2+p2T4 |
| 97 | C2 | (1−14T+pT2)(1+14T+pT2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.961129469380962181989895212878, −7.32305130052660723092311766345, −6.94425131620653819275823424387, −6.59760480537648271802059262796, −6.11070418133103761585213486013, −5.83615360060713533534812825033, −5.32506833441713424107768067043, −4.76444957510243367255024010339, −4.05768926443047187818056846955, −3.52186728479255860529351470583, −3.12901467819300418738126057534, −2.75614081137912399940820930647, −2.08483614218035674769636783112, −0.854302633003477795640210094843, 0,
0.854302633003477795640210094843, 2.08483614218035674769636783112, 2.75614081137912399940820930647, 3.12901467819300418738126057534, 3.52186728479255860529351470583, 4.05768926443047187818056846955, 4.76444957510243367255024010339, 5.32506833441713424107768067043, 5.83615360060713533534812825033, 6.11070418133103761585213486013, 6.59760480537648271802059262796, 6.94425131620653819275823424387, 7.32305130052660723092311766345, 7.961129469380962181989895212878