Properties

Label 4-987696-1.1-c1e2-0-12
Degree $4$
Conductor $987696$
Sign $-1$
Analytic cond. $62.9763$
Root an. cond. $2.81704$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $1$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s − 2·3-s + 2·4-s + 2·5-s − 4·6-s + 3·9-s + 4·10-s − 4·12-s − 4·15-s − 4·16-s + 6·17-s + 6·18-s + 19-s + 4·20-s − 7·25-s − 4·27-s − 8·30-s − 4·31-s − 8·32-s + 12·34-s + 6·36-s + 2·38-s + 6·45-s + 8·48-s − 5·49-s − 14·50-s − 12·51-s + ⋯
L(s)  = 1  + 1.41·2-s − 1.15·3-s + 4-s + 0.894·5-s − 1.63·6-s + 9-s + 1.26·10-s − 1.15·12-s − 1.03·15-s − 16-s + 1.45·17-s + 1.41·18-s + 0.229·19-s + 0.894·20-s − 7/5·25-s − 0.769·27-s − 1.46·30-s − 0.718·31-s − 1.41·32-s + 2.05·34-s + 36-s + 0.324·38-s + 0.894·45-s + 1.15·48-s − 5/7·49-s − 1.97·50-s − 1.68·51-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 987696 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 987696 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(987696\)    =    \(2^{4} \cdot 3^{2} \cdot 19^{3}\)
Sign: $-1$
Analytic conductor: \(62.9763\)
Root analytic conductor: \(2.81704\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 987696,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 - p T + p T^{2} \)
3$C_1$ \( ( 1 + T )^{2} \)
19$C_1$ \( 1 - T \)
good5$C_2$ \( ( 1 - T + p T^{2} )^{2} \)
7$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
11$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
13$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
17$C_2$ \( ( 1 - 3 T + p T^{2} )^{2} \)
23$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
29$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
31$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
41$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
43$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
47$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
59$C_2$ \( ( 1 + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 7 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
73$C_2$ \( ( 1 + 11 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 + p T^{2} )^{2} \)
83$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
89$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
97$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.75525037135579232003734806978, −7.06801910593054313669065331224, −7.04173846168624158743830695656, −6.11989947342759976206118717321, −6.02567308265222601671827257647, −5.52130085797761183807247002982, −5.49960710074578838011452836914, −4.80392893944635697455333037352, −4.29287803140015808576580756413, −3.90431057417865746907593992810, −3.22481329079945918066760847835, −2.76056898471702515117641585129, −1.85542976329431191785537331479, −1.37927155401612470737240964655, 0, 1.37927155401612470737240964655, 1.85542976329431191785537331479, 2.76056898471702515117641585129, 3.22481329079945918066760847835, 3.90431057417865746907593992810, 4.29287803140015808576580756413, 4.80392893944635697455333037352, 5.49960710074578838011452836914, 5.52130085797761183807247002982, 6.02567308265222601671827257647, 6.11989947342759976206118717321, 7.04173846168624158743830695656, 7.06801910593054313669065331224, 7.75525037135579232003734806978

Graph of the $Z$-function along the critical line