L(s) = 1 | + 2·2-s − 2·3-s + 2·4-s + 2·5-s − 4·6-s + 3·9-s + 4·10-s − 4·12-s − 4·15-s − 4·16-s + 6·17-s + 6·18-s + 19-s + 4·20-s − 7·25-s − 4·27-s − 8·30-s − 4·31-s − 8·32-s + 12·34-s + 6·36-s + 2·38-s + 6·45-s + 8·48-s − 5·49-s − 14·50-s − 12·51-s + ⋯ |
L(s) = 1 | + 1.41·2-s − 1.15·3-s + 4-s + 0.894·5-s − 1.63·6-s + 9-s + 1.26·10-s − 1.15·12-s − 1.03·15-s − 16-s + 1.45·17-s + 1.41·18-s + 0.229·19-s + 0.894·20-s − 7/5·25-s − 0.769·27-s − 1.46·30-s − 0.718·31-s − 1.41·32-s + 2.05·34-s + 36-s + 0.324·38-s + 0.894·45-s + 1.15·48-s − 5/7·49-s − 1.97·50-s − 1.68·51-s + ⋯ |
Λ(s)=(=(987696s/2ΓC(s)2L(s)−Λ(2−s)
Λ(s)=(=(987696s/2ΓC(s+1/2)2L(s)−Λ(1−s)
Degree: |
4 |
Conductor: |
987696
= 24⋅32⋅193
|
Sign: |
−1
|
Analytic conductor: |
62.9763 |
Root analytic conductor: |
2.81704 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
1
|
Selberg data: |
(4, 987696, ( :1/2,1/2), −1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C2 | 1−pT+pT2 |
| 3 | C1 | (1+T)2 |
| 19 | C1 | 1−T |
good | 5 | C2 | (1−T+pT2)2 |
| 7 | C2 | (1−3T+pT2)(1+3T+pT2) |
| 11 | C2 | (1−3T+pT2)(1+3T+pT2) |
| 13 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 17 | C2 | (1−3T+pT2)2 |
| 23 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 29 | C2 | (1−10T+pT2)(1+10T+pT2) |
| 31 | C2 | (1+2T+pT2)2 |
| 37 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 41 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 43 | C2 | (1−T+pT2)(1+T+pT2) |
| 47 | C2 | (1−3T+pT2)(1+3T+pT2) |
| 53 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 59 | C2 | (1+pT2)2 |
| 61 | C2 | (1−7T+pT2)2 |
| 67 | C2 | (1+8T+pT2)2 |
| 71 | C2 | (1+12T+pT2)2 |
| 73 | C2 | (1+11T+pT2)2 |
| 79 | C2 | (1+pT2)2 |
| 83 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 89 | C2 | (1−10T+pT2)(1+10T+pT2) |
| 97 | C2 | (1−2T+pT2)(1+2T+pT2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.75525037135579232003734806978, −7.06801910593054313669065331224, −7.04173846168624158743830695656, −6.11989947342759976206118717321, −6.02567308265222601671827257647, −5.52130085797761183807247002982, −5.49960710074578838011452836914, −4.80392893944635697455333037352, −4.29287803140015808576580756413, −3.90431057417865746907593992810, −3.22481329079945918066760847835, −2.76056898471702515117641585129, −1.85542976329431191785537331479, −1.37927155401612470737240964655, 0,
1.37927155401612470737240964655, 1.85542976329431191785537331479, 2.76056898471702515117641585129, 3.22481329079945918066760847835, 3.90431057417865746907593992810, 4.29287803140015808576580756413, 4.80392893944635697455333037352, 5.49960710074578838011452836914, 5.52130085797761183807247002982, 6.02567308265222601671827257647, 6.11989947342759976206118717321, 7.04173846168624158743830695656, 7.06801910593054313669065331224, 7.75525037135579232003734806978