L(s) = 1 | − 2-s − 2·3-s − 4-s + 5·5-s + 2·6-s + 3·8-s + 3·9-s − 5·10-s + 2·12-s − 10·15-s − 16-s − 3·17-s − 3·18-s + 19-s − 5·20-s − 6·24-s + 11·25-s − 4·27-s + 10·30-s − 7·31-s − 5·32-s + 3·34-s − 3·36-s − 38-s + 15·40-s + 15·45-s + 2·48-s + ⋯ |
L(s) = 1 | − 0.707·2-s − 1.15·3-s − 1/2·4-s + 2.23·5-s + 0.816·6-s + 1.06·8-s + 9-s − 1.58·10-s + 0.577·12-s − 2.58·15-s − 1/4·16-s − 0.727·17-s − 0.707·18-s + 0.229·19-s − 1.11·20-s − 1.22·24-s + 11/5·25-s − 0.769·27-s + 1.82·30-s − 1.25·31-s − 0.883·32-s + 0.514·34-s − 1/2·36-s − 0.162·38-s + 2.37·40-s + 2.23·45-s + 0.288·48-s + ⋯ |
Λ(s)=(=(987696s/2ΓC(s)2L(s)−Λ(2−s)
Λ(s)=(=(987696s/2ΓC(s+1/2)2L(s)−Λ(1−s)
Degree: |
4 |
Conductor: |
987696
= 24⋅32⋅193
|
Sign: |
−1
|
Analytic conductor: |
62.9763 |
Root analytic conductor: |
2.81704 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
1
|
Selberg data: |
(4, 987696, ( :1/2,1/2), −1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C2 | 1+T+pT2 |
| 3 | C1 | (1+T)2 |
| 19 | C1 | 1−T |
good | 5 | C2×C2 | (1−4T+pT2)(1−T+pT2) |
| 7 | C2 | (1−3T+pT2)(1+3T+pT2) |
| 11 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 13 | C22 | 1+8T2+p2T4 |
| 17 | C2×C2 | (1+pT2)(1+3T+pT2) |
| 23 | C22 | 1−24T2+p2T4 |
| 29 | C22 | 1+27T2+p2T4 |
| 31 | C2×C2 | (1−T+pT2)(1+8T+pT2) |
| 37 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 41 | C22 | 1−3T2+p2T4 |
| 43 | C22 | 1+25T2+p2T4 |
| 47 | C22 | 1−68T2+p2T4 |
| 53 | C22 | 1+79T2+p2T4 |
| 59 | C2×C2 | (1+3T+pT2)(1+9T+pT2) |
| 61 | C2×C2 | (1−10T+pT2)(1+5T+pT2) |
| 67 | C2×C2 | (1−T+pT2)(1+2T+pT2) |
| 71 | C2×C2 | (1−3T+pT2)(1+12T+pT2) |
| 73 | C2×C2 | (1−13T+pT2)(1+11T+pT2) |
| 79 | C2 | (1−12T+pT2)(1+12T+pT2) |
| 83 | C22 | 1−72T2+p2T4 |
| 89 | C22 | 1+165T2+p2T4 |
| 97 | C22 | 1+58T2+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.81947458032215673314917532689, −7.49134181637822409019182211683, −6.90820799466782018221444454712, −6.51538629427949879427875269097, −6.08900451382462637094878921273, −5.66001524938879741637465838582, −5.36968156418594919959726385528, −4.88323745463589915070432771723, −4.46103397436716246743238818421, −3.82221976196370896553630440730, −2.99753924749007578976059399541, −2.09439797072401209883470616174, −1.76289656293079236896734150247, −1.12946967656516647051616965624, 0,
1.12946967656516647051616965624, 1.76289656293079236896734150247, 2.09439797072401209883470616174, 2.99753924749007578976059399541, 3.82221976196370896553630440730, 4.46103397436716246743238818421, 4.88323745463589915070432771723, 5.36968156418594919959726385528, 5.66001524938879741637465838582, 6.08900451382462637094878921273, 6.51538629427949879427875269097, 6.90820799466782018221444454712, 7.49134181637822409019182211683, 7.81947458032215673314917532689