L(s) = 1 | − 2-s − 2·3-s − 4-s − 4·5-s + 2·6-s + 3·8-s + 3·9-s + 4·10-s + 2·12-s + 8·15-s − 16-s − 12·17-s − 3·18-s + 19-s + 4·20-s − 6·24-s + 2·25-s − 4·27-s − 8·30-s − 16·31-s − 5·32-s + 12·34-s − 3·36-s − 38-s − 12·40-s − 12·45-s + 2·48-s + ⋯ |
L(s) = 1 | − 0.707·2-s − 1.15·3-s − 1/2·4-s − 1.78·5-s + 0.816·6-s + 1.06·8-s + 9-s + 1.26·10-s + 0.577·12-s + 2.06·15-s − 1/4·16-s − 2.91·17-s − 0.707·18-s + 0.229·19-s + 0.894·20-s − 1.22·24-s + 2/5·25-s − 0.769·27-s − 1.46·30-s − 2.87·31-s − 0.883·32-s + 2.05·34-s − 1/2·36-s − 0.162·38-s − 1.89·40-s − 1.78·45-s + 0.288·48-s + ⋯ |
Λ(s)=(=(987696s/2ΓC(s)2L(s)−Λ(2−s)
Λ(s)=(=(987696s/2ΓC(s+1/2)2L(s)−Λ(1−s)
Degree: |
4 |
Conductor: |
987696
= 24⋅32⋅193
|
Sign: |
−1
|
Analytic conductor: |
62.9763 |
Root analytic conductor: |
2.81704 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
1
|
Selberg data: |
(4, 987696, ( :1/2,1/2), −1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C2 | 1+T+pT2 |
| 3 | C1 | (1+T)2 |
| 19 | C1 | 1−T |
good | 5 | C2 | (1+2T+pT2)2 |
| 7 | C2 | (1+pT2)2 |
| 11 | C2 | (1+pT2)2 |
| 13 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 17 | C2 | (1+6T+pT2)2 |
| 23 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 29 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 31 | C2 | (1+8T+pT2)2 |
| 37 | C2 | (1−10T+pT2)(1+10T+pT2) |
| 41 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 43 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 47 | C2 | (1−12T+pT2)(1+12T+pT2) |
| 53 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 59 | C2 | (1−12T+pT2)2 |
| 61 | C2 | (1+2T+pT2)2 |
| 67 | C2 | (1−4T+pT2)2 |
| 71 | C2 | (1+pT2)2 |
| 73 | C2 | (1−10T+pT2)2 |
| 79 | C2 | (1+pT2)2 |
| 83 | C2 | (1−16T+pT2)(1+16T+pT2) |
| 89 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 97 | C2 | (1−10T+pT2)(1+10T+pT2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.099644677533565214444467559710, −7.43259308735181576062150293394, −6.98236656892345640095319736227, −6.88281746236137995334549719629, −6.30774150521524867405980638808, −5.42974656732833448500123753190, −5.28029214515602867786662657712, −4.62864849822679992384179631378, −4.16838172205224943400021226417, −3.91841567788800315953565193679, −3.49609663069962101813276746331, −2.25179019930198933577153857080, −1.72203721066548968493435337820, −0.49711700208122723907813480784, 0,
0.49711700208122723907813480784, 1.72203721066548968493435337820, 2.25179019930198933577153857080, 3.49609663069962101813276746331, 3.91841567788800315953565193679, 4.16838172205224943400021226417, 4.62864849822679992384179631378, 5.28029214515602867786662657712, 5.42974656732833448500123753190, 6.30774150521524867405980638808, 6.88281746236137995334549719629, 6.98236656892345640095319736227, 7.43259308735181576062150293394, 8.099644677533565214444467559710