Properties

Label 4-987696-1.1-c1e2-0-1
Degree $4$
Conductor $987696$
Sign $-1$
Analytic cond. $62.9763$
Root an. cond. $2.81704$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $1$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 2·3-s − 4-s − 4·5-s + 2·6-s + 3·8-s + 3·9-s + 4·10-s + 2·12-s + 8·15-s − 16-s − 12·17-s − 3·18-s + 19-s + 4·20-s − 6·24-s + 2·25-s − 4·27-s − 8·30-s − 16·31-s − 5·32-s + 12·34-s − 3·36-s − 38-s − 12·40-s − 12·45-s + 2·48-s + ⋯
L(s)  = 1  − 0.707·2-s − 1.15·3-s − 1/2·4-s − 1.78·5-s + 0.816·6-s + 1.06·8-s + 9-s + 1.26·10-s + 0.577·12-s + 2.06·15-s − 1/4·16-s − 2.91·17-s − 0.707·18-s + 0.229·19-s + 0.894·20-s − 1.22·24-s + 2/5·25-s − 0.769·27-s − 1.46·30-s − 2.87·31-s − 0.883·32-s + 2.05·34-s − 1/2·36-s − 0.162·38-s − 1.89·40-s − 1.78·45-s + 0.288·48-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 987696 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 987696 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(987696\)    =    \(2^{4} \cdot 3^{2} \cdot 19^{3}\)
Sign: $-1$
Analytic conductor: \(62.9763\)
Root analytic conductor: \(2.81704\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 987696,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + T + p T^{2} \)
3$C_1$ \( ( 1 + T )^{2} \)
19$C_1$ \( 1 - T \)
good5$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
7$C_2$ \( ( 1 + p T^{2} )^{2} \)
11$C_2$ \( ( 1 + p T^{2} )^{2} \)
13$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
17$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
23$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
29$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
31$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
41$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
43$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
47$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
59$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 + p T^{2} )^{2} \)
83$C_2$ \( ( 1 - 16 T + p T^{2} )( 1 + 16 T + p T^{2} ) \)
89$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
97$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.099644677533565214444467559710, −7.43259308735181576062150293394, −6.98236656892345640095319736227, −6.88281746236137995334549719629, −6.30774150521524867405980638808, −5.42974656732833448500123753190, −5.28029214515602867786662657712, −4.62864849822679992384179631378, −4.16838172205224943400021226417, −3.91841567788800315953565193679, −3.49609663069962101813276746331, −2.25179019930198933577153857080, −1.72203721066548968493435337820, −0.49711700208122723907813480784, 0, 0.49711700208122723907813480784, 1.72203721066548968493435337820, 2.25179019930198933577153857080, 3.49609663069962101813276746331, 3.91841567788800315953565193679, 4.16838172205224943400021226417, 4.62864849822679992384179631378, 5.28029214515602867786662657712, 5.42974656732833448500123753190, 6.30774150521524867405980638808, 6.88281746236137995334549719629, 6.98236656892345640095319736227, 7.43259308735181576062150293394, 8.099644677533565214444467559710

Graph of the $Z$-function along the critical line