L(s) = 1 | + 13·4-s + 50·5-s − 142·9-s − 124·11-s − 87·16-s + 722·19-s + 650·20-s + 1.87e3·25-s − 1.84e3·36-s − 1.61e3·44-s − 7.10e3·45-s + 4.80e3·49-s − 6.20e3·55-s + 1.42e4·61-s − 4.45e3·64-s + 9.38e3·76-s − 4.35e3·80-s + 1.36e4·81-s + 3.61e4·95-s + 1.76e4·99-s + 2.43e4·100-s + 4.01e4·101-s − 1.77e4·121-s + 6.25e4·125-s + 127-s + 131-s + 137-s + ⋯ |
L(s) = 1 | + 0.812·4-s + 2·5-s − 1.75·9-s − 1.02·11-s − 0.339·16-s + 2·19-s + 13/8·20-s + 3·25-s − 1.42·36-s − 0.832·44-s − 3.50·45-s + 2·49-s − 2.04·55-s + 3.83·61-s − 1.08·64-s + 13/8·76-s − 0.679·80-s + 2.07·81-s + 4·95-s + 1.79·99-s + 2.43·100-s + 3.94·101-s − 1.21·121-s + 4·125-s + 6.20e−5·127-s + 5.82e−5·131-s + 5.32e−5·137-s + ⋯ |
Λ(s)=(=(9025s/2ΓC(s)2L(s)Λ(5−s)
Λ(s)=(=(9025s/2ΓC(s+2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
9025
= 52⋅192
|
Sign: |
1
|
Analytic conductor: |
96.4352 |
Root analytic conductor: |
3.13371 |
Motivic weight: |
4 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 9025, ( :2,2), 1)
|
Particular Values
L(25) |
≈ |
3.543337798 |
L(21) |
≈ |
3.543337798 |
L(3) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 5 | C1 | (1−p2T)2 |
| 19 | C1 | (1−p2T)2 |
good | 2 | C22 | 1−13T2+p8T4 |
| 3 | C22 | 1+142T2+p8T4 |
| 7 | C1×C1 | (1−p2T)2(1+p2T)2 |
| 11 | C2 | (1+62T+p4T2)2 |
| 13 | C22 | 1+52622T2+p8T4 |
| 17 | C1×C1 | (1−p2T)2(1+p2T)2 |
| 23 | C1×C1 | (1−p2T)2(1+p2T)2 |
| 29 | C1×C1 | (1−p2T)2(1+p2T)2 |
| 31 | C1×C1 | (1−p2T)2(1+p2T)2 |
| 37 | C22 | 1−3237298T2+p8T4 |
| 41 | C1×C1 | (1−p2T)2(1+p2T)2 |
| 43 | C1×C1 | (1−p2T)2(1+p2T)2 |
| 47 | C1×C1 | (1−p2T)2(1+p2T)2 |
| 53 | C22 | 1+15154382T2+p8T4 |
| 59 | C1×C1 | (1−p2T)2(1+p2T)2 |
| 61 | C2 | (1−7138T+p4T2)2 |
| 67 | C22 | 1+3364622T2+p8T4 |
| 71 | C1×C1 | (1−p2T)2(1+p2T)2 |
| 73 | C1×C1 | (1−p2T)2(1+p2T)2 |
| 79 | C1×C1 | (1−p2T)2(1+p2T)2 |
| 83 | C1×C1 | (1−p2T)2(1+p2T)2 |
| 89 | C1×C1 | (1−p2T)2(1+p2T)2 |
| 97 | C22 | 1−60577618T2+p8T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.57334943631846293688007237545, −13.18836900876708261982688968689, −12.54643651824025999483925167147, −11.67142682040378487914843403625, −11.50513753515577700174771054630, −10.82477619658826124356223081458, −10.21498510190369114511038332773, −9.898354266982772451834703022771, −9.007168983878526367304391043211, −8.848879223948621224497156625464, −7.911359142333311285752965927687, −7.19133250618896566611253659942, −6.55050977467251966660474252264, −5.83737890371271249716412607421, −5.44855585979411610412198506732, −5.06408842290981846085975709017, −3.32073381822115920946437634512, −2.53597628261584386114806763171, −2.25572542021785236939160522503, −0.882534227291798518873035730630,
0.882534227291798518873035730630, 2.25572542021785236939160522503, 2.53597628261584386114806763171, 3.32073381822115920946437634512, 5.06408842290981846085975709017, 5.44855585979411610412198506732, 5.83737890371271249716412607421, 6.55050977467251966660474252264, 7.19133250618896566611253659942, 7.911359142333311285752965927687, 8.848879223948621224497156625464, 9.007168983878526367304391043211, 9.898354266982772451834703022771, 10.21498510190369114511038332773, 10.82477619658826124356223081458, 11.50513753515577700174771054630, 11.67142682040378487914843403625, 12.54643651824025999483925167147, 13.18836900876708261982688968689, 13.57334943631846293688007237545