L(s) = 1 | − 4·5-s − 2·7-s + 4·11-s + 2·13-s + 2·17-s − 2·19-s − 6·23-s + 2·25-s + 10·29-s + 6·31-s + 8·35-s − 10·37-s + 8·43-s + 3·49-s + 2·53-s − 16·55-s − 4·59-s − 4·61-s − 8·65-s − 12·67-s + 6·71-s − 20·73-s − 8·77-s + 18·79-s − 10·83-s − 8·85-s + 16·89-s + ⋯ |
L(s) = 1 | − 1.78·5-s − 0.755·7-s + 1.20·11-s + 0.554·13-s + 0.485·17-s − 0.458·19-s − 1.25·23-s + 2/5·25-s + 1.85·29-s + 1.07·31-s + 1.35·35-s − 1.64·37-s + 1.21·43-s + 3/7·49-s + 0.274·53-s − 2.15·55-s − 0.520·59-s − 0.512·61-s − 0.992·65-s − 1.46·67-s + 0.712·71-s − 2.34·73-s − 0.911·77-s + 2.02·79-s − 1.09·83-s − 0.867·85-s + 1.69·89-s + ⋯ |
Λ(s)=(=(91699776s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(91699776s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
91699776
= 26⋅34⋅72⋅192
|
Sign: |
1
|
Analytic conductor: |
5846.85 |
Root analytic conductor: |
8.74441 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 91699776, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
1.595926365 |
L(21) |
≈ |
1.595926365 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | | 1 |
| 7 | C1 | (1+T)2 |
| 19 | C1 | (1+T)2 |
good | 5 | C2 | (1+2T+pT2)2 |
| 11 | C2 | (1−2T+pT2)2 |
| 13 | C4 | 1−2T+10T2−2pT3+p2T4 |
| 17 | D4 | 1−2T+18T2−2pT3+p2T4 |
| 23 | D4 | 1+6T+38T2+6pT3+p2T4 |
| 29 | D4 | 1−10T+66T2−10pT3+p2T4 |
| 31 | D4 | 1−6T+54T2−6pT3+p2T4 |
| 37 | D4 | 1+10T+82T2+10pT3+p2T4 |
| 41 | C22 | 1+14T2+p2T4 |
| 43 | C2 | (1−4T+pT2)2 |
| 47 | C2 | (1+pT2)2 |
| 53 | D4 | 1−2T+90T2−2pT3+p2T4 |
| 59 | D4 | 1+4T+54T2+4pT3+p2T4 |
| 61 | C2 | (1+2T+pT2)2 |
| 67 | D4 | 1+12T+102T2+12pT3+p2T4 |
| 71 | D4 | 1−6T−2T2−6pT3+p2T4 |
| 73 | C2 | (1+10T+pT2)2 |
| 79 | D4 | 1−18T+222T2−18pT3+p2T4 |
| 83 | D4 | 1+10T+174T2+10pT3+p2T4 |
| 89 | D4 | 1−16T+174T2−16pT3+p2T4 |
| 97 | C22 | 1+126T2+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.84951657561159274106672978736, −7.60358830764236590411092016299, −7.07474396074337534150988546293, −6.99337560207161330067812098486, −6.39649675499337916231273539640, −6.31480450206719184619501330049, −5.79645148908963802216614021230, −5.75058348493841252944320472383, −4.84588209817386277044704354395, −4.66293939515861899167726718694, −4.26791466512881524167539492356, −3.97319549997191632117540244165, −3.58789587897799903431276403506, −3.51297941035596890293402275489, −2.82970041661384375884560329137, −2.66144195653829354079566755847, −1.76980991153540768376863713602, −1.52196817292305346432031620228, −0.70153349473876257868841530637, −0.42607731870913130939555465244,
0.42607731870913130939555465244, 0.70153349473876257868841530637, 1.52196817292305346432031620228, 1.76980991153540768376863713602, 2.66144195653829354079566755847, 2.82970041661384375884560329137, 3.51297941035596890293402275489, 3.58789587897799903431276403506, 3.97319549997191632117540244165, 4.26791466512881524167539492356, 4.66293939515861899167726718694, 4.84588209817386277044704354395, 5.75058348493841252944320472383, 5.79645148908963802216614021230, 6.31480450206719184619501330049, 6.39649675499337916231273539640, 6.99337560207161330067812098486, 7.07474396074337534150988546293, 7.60358830764236590411092016299, 7.84951657561159274106672978736