L(s) = 1 | + 4·2-s − 2·3-s + 12·4-s − 8·6-s − 8·7-s + 32·8-s − 24·9-s + 28·11-s − 24·12-s − 2·13-s − 32·14-s + 80·16-s − 152·17-s − 96·18-s − 38·19-s + 16·21-s + 112·22-s − 284·23-s − 64·24-s − 8·26-s + 50·27-s − 96·28-s + 144·29-s + 128·31-s + 192·32-s − 56·33-s − 608·34-s + ⋯ |
L(s) = 1 | + 1.41·2-s − 0.384·3-s + 3/2·4-s − 0.544·6-s − 0.431·7-s + 1.41·8-s − 8/9·9-s + 0.767·11-s − 0.577·12-s − 0.0426·13-s − 0.610·14-s + 5/4·16-s − 2.16·17-s − 1.25·18-s − 0.458·19-s + 0.166·21-s + 1.08·22-s − 2.57·23-s − 0.544·24-s − 0.0603·26-s + 0.356·27-s − 0.647·28-s + 0.922·29-s + 0.741·31-s + 1.06·32-s − 0.295·33-s − 3.06·34-s + ⋯ |
Λ(s)=(=(902500s/2ΓC(s)2L(s)Λ(4−s)
Λ(s)=(=(902500s/2ΓC(s+3/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
902500
= 22⋅54⋅192
|
Sign: |
1
|
Analytic conductor: |
3141.80 |
Root analytic conductor: |
7.48677 |
Motivic weight: |
3 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
2
|
Selberg data: |
(4, 902500, ( :3/2,3/2), 1)
|
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C1 | (1−pT)2 |
| 5 | | 1 |
| 19 | C1 | (1+pT)2 |
good | 3 | D4 | 1+2T+28T2+2p3T3+p6T4 |
| 7 | D4 | 1+8T+510T2+8p3T3+p6T4 |
| 11 | D4 | 1−28T+1658T2−28p3T3+p6T4 |
| 13 | D4 | 1+2T−648T2+2p3T3+p6T4 |
| 17 | D4 | 1+152T+14630T2+152p3T3+p6T4 |
| 23 | D4 | 1+284T+43910T2+284p3T3+p6T4 |
| 29 | D4 | 1−144T+49630T2−144p3T3+p6T4 |
| 31 | D4 | 1−128T+38286T2−128p3T3+p6T4 |
| 37 | D4 | 1−194T+104640T2−194p3T3+p6T4 |
| 41 | D4 | 1−608T+213830T2−608p3T3+p6T4 |
| 43 | D4 | 1+288T+175862T2+288p3T3+p6T4 |
| 47 | D4 | 1+432T+188590T2+432p3T3+p6T4 |
| 53 | D4 | 1+810T+453352T2+810p3T3+p6T4 |
| 59 | D4 | 1−324T+333214T2−324p3T3+p6T4 |
| 61 | D4 | 1+1076T+698754T2+1076p3T3+p6T4 |
| 67 | D4 | 1+658T+661380T2+658p3T3+p6T4 |
| 71 | D4 | 1+1696T+1433198T2+1696p3T3+p6T4 |
| 73 | D4 | 1+832T+738822T2+832p3T3+p6T4 |
| 79 | D4 | 1+1428T+1222262T2+1428p3T3+p6T4 |
| 83 | D4 | 1−508T+848942T2−508p3T3+p6T4 |
| 89 | D4 | 1−576T+448582T2−576p3T3+p6T4 |
| 97 | D4 | 1+834T+1999160T2+834p3T3+p6T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.448959636667590691187629706141, −9.087615638466382584048561414803, −8.451647224305470413009014459005, −8.260456193940835627131396145190, −7.59837756726843962762047557598, −7.21978367490010068882005092533, −6.41631033986201676233939676517, −6.28447917937203411615459605031, −6.08687681922474799801208273142, −5.80240638924554050967754806514, −4.67312451042721037812684850559, −4.59794372601258761984655648470, −4.33650191591405446968441595898, −3.65687137884615326326368383470, −2.91833349582925394225778191131, −2.72858653096269150697097643602, −1.91767739377656276507970096672, −1.45978496085265755233525692299, 0, 0,
1.45978496085265755233525692299, 1.91767739377656276507970096672, 2.72858653096269150697097643602, 2.91833349582925394225778191131, 3.65687137884615326326368383470, 4.33650191591405446968441595898, 4.59794372601258761984655648470, 4.67312451042721037812684850559, 5.80240638924554050967754806514, 6.08687681922474799801208273142, 6.28447917937203411615459605031, 6.41631033986201676233939676517, 7.21978367490010068882005092533, 7.59837756726843962762047557598, 8.260456193940835627131396145190, 8.451647224305470413009014459005, 9.087615638466382584048561414803, 9.448959636667590691187629706141