L(s) = 1 | − 4·4-s + 50·9-s + 114·11-s + 16·16-s − 38·19-s + 300·29-s + 64·31-s − 200·36-s − 516·41-s − 456·44-s − 275·49-s + 660·59-s − 26·61-s − 64·64-s + 1.28e3·71-s + 152·76-s + 1.40e3·79-s + 1.77e3·81-s + 1.20e3·89-s + 5.70e3·99-s + 2.12e3·101-s − 2.92e3·109-s − 1.20e3·116-s + 7.08e3·121-s − 256·124-s + 127-s + 131-s + ⋯ |
L(s) = 1 | − 1/2·4-s + 1.85·9-s + 3.12·11-s + 1/4·16-s − 0.458·19-s + 1.92·29-s + 0.370·31-s − 0.925·36-s − 1.96·41-s − 1.56·44-s − 0.801·49-s + 1.45·59-s − 0.0545·61-s − 1/8·64-s + 2.14·71-s + 0.229·76-s + 1.99·79-s + 2.42·81-s + 1.42·89-s + 5.78·99-s + 2.09·101-s − 2.56·109-s − 0.960·116-s + 5.32·121-s − 0.185·124-s + 0.000698·127-s + 0.000666·131-s + ⋯ |
Λ(s)=(=(902500s/2ΓC(s)2L(s)Λ(4−s)
Λ(s)=(=(902500s/2ΓC(s+3/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
902500
= 22⋅54⋅192
|
Sign: |
1
|
Analytic conductor: |
3141.80 |
Root analytic conductor: |
7.48677 |
Motivic weight: |
3 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 902500, ( :3/2,3/2), 1)
|
Particular Values
L(2) |
≈ |
5.587255328 |
L(21) |
≈ |
5.587255328 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C2 | 1+p2T2 |
| 5 | | 1 |
| 19 | C1 | (1+pT)2 |
good | 3 | C22 | 1−50T2+p6T4 |
| 7 | C22 | 1+275T2+p6T4 |
| 11 | C2 | (1−57T+p3T2)2 |
| 13 | C2 | (1−6pT+p3T2)(1+6pT+p3T2) |
| 17 | C22 | 1−5065T2+p6T4 |
| 23 | C22 | 1−19150T2+p6T4 |
| 29 | C2 | (1−150T+p3T2)2 |
| 31 | C2 | (1−32T+p3T2)2 |
| 37 | C22 | 1−50230T2+p6T4 |
| 41 | C2 | (1+258T+p3T2)2 |
| 43 | C22 | 1−154525T2+p6T4 |
| 47 | C22 | 1+127595T2+p6T4 |
| 53 | C22 | 1−111130T2+p6T4 |
| 59 | C2 | (1−330T+p3T2)2 |
| 61 | C2 | (1+13T+p3T2)2 |
| 67 | C22 | 1+131210T2+p6T4 |
| 71 | C2 | (1−642T+p3T2)2 |
| 73 | C22 | 1−540865T2+p6T4 |
| 79 | C2 | (1−700T+p3T2)2 |
| 83 | C22 | 1−1143430T2+p6T4 |
| 89 | C2 | (1−600T+p3T2)2 |
| 97 | C22 | 1+202430T2+p6T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.644064037140311240561006068300, −9.546128984383800734137750149014, −9.161236716932795085658509517337, −8.673752622207650673948618893327, −8.194347193438798745591987146293, −7.957922448707580277618440977216, −6.97215459298714555403848428555, −6.91113085207857680330353429048, −6.48890752218509892622696000315, −6.36735309107665145319883590926, −5.48114803641410353242478146921, −4.67786630321155019324172541633, −4.65555582243016300614076263349, −4.07776084083849348591990500347, −3.60414352446249723225262212765, −3.37379483734888320502834456982, −2.13248276283789345642119631744, −1.70041086502442814865661357666, −1.02200080965530189226789347875, −0.78135078342163339690231969317,
0.78135078342163339690231969317, 1.02200080965530189226789347875, 1.70041086502442814865661357666, 2.13248276283789345642119631744, 3.37379483734888320502834456982, 3.60414352446249723225262212765, 4.07776084083849348591990500347, 4.65555582243016300614076263349, 4.67786630321155019324172541633, 5.48114803641410353242478146921, 6.36735309107665145319883590926, 6.48890752218509892622696000315, 6.91113085207857680330353429048, 6.97215459298714555403848428555, 7.957922448707580277618440977216, 8.194347193438798745591987146293, 8.673752622207650673948618893327, 9.161236716932795085658509517337, 9.546128984383800734137750149014, 9.644064037140311240561006068300