Properties

Label 4-950e2-1.1-c3e2-0-3
Degree $4$
Conductor $902500$
Sign $1$
Analytic cond. $3141.80$
Root an. cond. $7.48677$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·4-s + 50·9-s + 114·11-s + 16·16-s − 38·19-s + 300·29-s + 64·31-s − 200·36-s − 516·41-s − 456·44-s − 275·49-s + 660·59-s − 26·61-s − 64·64-s + 1.28e3·71-s + 152·76-s + 1.40e3·79-s + 1.77e3·81-s + 1.20e3·89-s + 5.70e3·99-s + 2.12e3·101-s − 2.92e3·109-s − 1.20e3·116-s + 7.08e3·121-s − 256·124-s + 127-s + 131-s + ⋯
L(s)  = 1  − 1/2·4-s + 1.85·9-s + 3.12·11-s + 1/4·16-s − 0.458·19-s + 1.92·29-s + 0.370·31-s − 0.925·36-s − 1.96·41-s − 1.56·44-s − 0.801·49-s + 1.45·59-s − 0.0545·61-s − 1/8·64-s + 2.14·71-s + 0.229·76-s + 1.99·79-s + 2.42·81-s + 1.42·89-s + 5.78·99-s + 2.09·101-s − 2.56·109-s − 0.960·116-s + 5.32·121-s − 0.185·124-s + 0.000698·127-s + 0.000666·131-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 902500 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 902500 ^{s/2} \, \Gamma_{\C}(s+3/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(902500\)    =    \(2^{2} \cdot 5^{4} \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(3141.80\)
Root analytic conductor: \(7.48677\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 902500,\ (\ :3/2, 3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(5.587255328\)
\(L(\frac12)\) \(\approx\) \(5.587255328\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + p^{2} T^{2} \)
5 \( 1 \)
19$C_1$ \( ( 1 + p T )^{2} \)
good3$C_2^2$ \( 1 - 50 T^{2} + p^{6} T^{4} \)
7$C_2^2$ \( 1 + 275 T^{2} + p^{6} T^{4} \)
11$C_2$ \( ( 1 - 57 T + p^{3} T^{2} )^{2} \)
13$C_2$ \( ( 1 - 6 p T + p^{3} T^{2} )( 1 + 6 p T + p^{3} T^{2} ) \)
17$C_2^2$ \( 1 - 5065 T^{2} + p^{6} T^{4} \)
23$C_2^2$ \( 1 - 19150 T^{2} + p^{6} T^{4} \)
29$C_2$ \( ( 1 - 150 T + p^{3} T^{2} )^{2} \)
31$C_2$ \( ( 1 - 32 T + p^{3} T^{2} )^{2} \)
37$C_2^2$ \( 1 - 50230 T^{2} + p^{6} T^{4} \)
41$C_2$ \( ( 1 + 258 T + p^{3} T^{2} )^{2} \)
43$C_2^2$ \( 1 - 154525 T^{2} + p^{6} T^{4} \)
47$C_2^2$ \( 1 + 127595 T^{2} + p^{6} T^{4} \)
53$C_2^2$ \( 1 - 111130 T^{2} + p^{6} T^{4} \)
59$C_2$ \( ( 1 - 330 T + p^{3} T^{2} )^{2} \)
61$C_2$ \( ( 1 + 13 T + p^{3} T^{2} )^{2} \)
67$C_2^2$ \( 1 + 131210 T^{2} + p^{6} T^{4} \)
71$C_2$ \( ( 1 - 642 T + p^{3} T^{2} )^{2} \)
73$C_2^2$ \( 1 - 540865 T^{2} + p^{6} T^{4} \)
79$C_2$ \( ( 1 - 700 T + p^{3} T^{2} )^{2} \)
83$C_2^2$ \( 1 - 1143430 T^{2} + p^{6} T^{4} \)
89$C_2$ \( ( 1 - 600 T + p^{3} T^{2} )^{2} \)
97$C_2^2$ \( 1 + 202430 T^{2} + p^{6} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.644064037140311240561006068300, −9.546128984383800734137750149014, −9.161236716932795085658509517337, −8.673752622207650673948618893327, −8.194347193438798745591987146293, −7.957922448707580277618440977216, −6.97215459298714555403848428555, −6.91113085207857680330353429048, −6.48890752218509892622696000315, −6.36735309107665145319883590926, −5.48114803641410353242478146921, −4.67786630321155019324172541633, −4.65555582243016300614076263349, −4.07776084083849348591990500347, −3.60414352446249723225262212765, −3.37379483734888320502834456982, −2.13248276283789345642119631744, −1.70041086502442814865661357666, −1.02200080965530189226789347875, −0.78135078342163339690231969317, 0.78135078342163339690231969317, 1.02200080965530189226789347875, 1.70041086502442814865661357666, 2.13248276283789345642119631744, 3.37379483734888320502834456982, 3.60414352446249723225262212765, 4.07776084083849348591990500347, 4.65555582243016300614076263349, 4.67786630321155019324172541633, 5.48114803641410353242478146921, 6.36735309107665145319883590926, 6.48890752218509892622696000315, 6.91113085207857680330353429048, 6.97215459298714555403848428555, 7.957922448707580277618440977216, 8.194347193438798745591987146293, 8.673752622207650673948618893327, 9.161236716932795085658509517337, 9.546128984383800734137750149014, 9.644064037140311240561006068300

Graph of the $Z$-function along the critical line