Properties

Label 4-950e2-1.1-c3e2-0-2
Degree $4$
Conductor $902500$
Sign $1$
Analytic cond. $3141.80$
Root an. cond. $7.48677$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·2-s − 3-s + 12·4-s − 4·6-s + 27·7-s + 32·8-s + 25·9-s − 52·11-s − 12·12-s + 17·13-s + 108·14-s + 80·16-s − 75·17-s + 100·18-s + 38·19-s − 27·21-s − 208·22-s + 203·23-s − 32·24-s + 68·26-s − 76·27-s + 324·28-s + 183·29-s − 18·31-s + 192·32-s + 52·33-s − 300·34-s + ⋯
L(s)  = 1  + 1.41·2-s − 0.192·3-s + 3/2·4-s − 0.272·6-s + 1.45·7-s + 1.41·8-s + 0.925·9-s − 1.42·11-s − 0.288·12-s + 0.362·13-s + 2.06·14-s + 5/4·16-s − 1.07·17-s + 1.30·18-s + 0.458·19-s − 0.280·21-s − 2.01·22-s + 1.84·23-s − 0.272·24-s + 0.512·26-s − 0.541·27-s + 2.18·28-s + 1.17·29-s − 0.104·31-s + 1.06·32-s + 0.274·33-s − 1.51·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 902500 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 902500 ^{s/2} \, \Gamma_{\C}(s+3/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(902500\)    =    \(2^{2} \cdot 5^{4} \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(3141.80\)
Root analytic conductor: \(7.48677\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 902500,\ (\ :3/2, 3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(11.07667592\)
\(L(\frac12)\) \(\approx\) \(11.07667592\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 - p T )^{2} \)
5 \( 1 \)
19$C_1$ \( ( 1 - p T )^{2} \)
good3$D_{4}$ \( 1 + T - 8 p T^{2} + p^{3} T^{3} + p^{6} T^{4} \)
7$D_{4}$ \( 1 - 27 T + 790 T^{2} - 27 p^{3} T^{3} + p^{6} T^{4} \)
11$D_{4}$ \( 1 + 52 T + 2086 T^{2} + 52 p^{3} T^{3} + p^{6} T^{4} \)
13$D_{4}$ \( 1 - 17 T + 3762 T^{2} - 17 p^{3} T^{3} + p^{6} T^{4} \)
17$D_{4}$ \( 1 + 75 T + 10528 T^{2} + 75 p^{3} T^{3} + p^{6} T^{4} \)
23$D_{4}$ \( 1 - 203 T + 30802 T^{2} - 203 p^{3} T^{3} + p^{6} T^{4} \)
29$D_{4}$ \( 1 - 183 T + 50812 T^{2} - 183 p^{3} T^{3} + p^{6} T^{4} \)
31$D_{4}$ \( 1 + 18 T + 6766 T^{2} + 18 p^{3} T^{3} + p^{6} T^{4} \)
37$D_{4}$ \( 1 + 78 T + 64954 T^{2} + 78 p^{3} T^{3} + p^{6} T^{4} \)
41$C_2$ \( ( 1 - 390 T + p^{3} T^{2} )^{2} \)
43$D_{4}$ \( 1 + 338 T + 187262 T^{2} + 338 p^{3} T^{3} + p^{6} T^{4} \)
47$D_{4}$ \( 1 + 24 T + 162718 T^{2} + 24 p^{3} T^{3} + p^{6} T^{4} \)
53$D_{4}$ \( 1 - T + 77950 T^{2} - p^{3} T^{3} + p^{6} T^{4} \)
59$D_{4}$ \( 1 + 687 T + 370294 T^{2} + 687 p^{3} T^{3} + p^{6} T^{4} \)
61$D_{4}$ \( 1 + 1222 T + 811946 T^{2} + 1222 p^{3} T^{3} + p^{6} T^{4} \)
67$D_{4}$ \( 1 - 43 T + 250724 T^{2} - 43 p^{3} T^{3} + p^{6} T^{4} \)
71$D_{4}$ \( 1 - 1500 T + 1176910 T^{2} - 1500 p^{3} T^{3} + p^{6} T^{4} \)
73$D_{4}$ \( 1 - 983 T + 900588 T^{2} - 983 p^{3} T^{3} + p^{6} T^{4} \)
79$D_{4}$ \( 1 - 750 T + 1126390 T^{2} - 750 p^{3} T^{3} + p^{6} T^{4} \)
83$D_{4}$ \( 1 + 1010 T + 819862 T^{2} + 1010 p^{3} T^{3} + p^{6} T^{4} \)
89$D_{4}$ \( 1 - 164 T + 810694 T^{2} - 164 p^{3} T^{3} + p^{6} T^{4} \)
97$D_{4}$ \( 1 - 954 T + 1301362 T^{2} - 954 p^{3} T^{3} + p^{6} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.970142502673178543521706429951, −9.568975185464477067828508893448, −8.962102782033766914122155121963, −8.515577894766183633104227004063, −7.985851859228781972512507727804, −7.50089586082315143029449144745, −7.48062792106666494278073985435, −6.83372359829170419262197063014, −6.15851405718921442167246758724, −6.11911590948591655652302054274, −5.13464245421887092332178388995, −4.95956734496589551197580896164, −4.77215001675389421853622134617, −4.33082836982738947756603490264, −3.60713698357389011860136956416, −3.05531948206261635909907604664, −2.50328471731616364515862116782, −1.94780221624124080936063720390, −1.35088218372709137864397903339, −0.68115266220540391884769402820, 0.68115266220540391884769402820, 1.35088218372709137864397903339, 1.94780221624124080936063720390, 2.50328471731616364515862116782, 3.05531948206261635909907604664, 3.60713698357389011860136956416, 4.33082836982738947756603490264, 4.77215001675389421853622134617, 4.95956734496589551197580896164, 5.13464245421887092332178388995, 6.11911590948591655652302054274, 6.15851405718921442167246758724, 6.83372359829170419262197063014, 7.48062792106666494278073985435, 7.50089586082315143029449144745, 7.985851859228781972512507727804, 8.515577894766183633104227004063, 8.962102782033766914122155121963, 9.568975185464477067828508893448, 9.970142502673178543521706429951

Graph of the $Z$-function along the critical line