L(s) = 1 | + 4·2-s − 3-s + 12·4-s − 4·6-s + 27·7-s + 32·8-s + 25·9-s − 52·11-s − 12·12-s + 17·13-s + 108·14-s + 80·16-s − 75·17-s + 100·18-s + 38·19-s − 27·21-s − 208·22-s + 203·23-s − 32·24-s + 68·26-s − 76·27-s + 324·28-s + 183·29-s − 18·31-s + 192·32-s + 52·33-s − 300·34-s + ⋯ |
L(s) = 1 | + 1.41·2-s − 0.192·3-s + 3/2·4-s − 0.272·6-s + 1.45·7-s + 1.41·8-s + 0.925·9-s − 1.42·11-s − 0.288·12-s + 0.362·13-s + 2.06·14-s + 5/4·16-s − 1.07·17-s + 1.30·18-s + 0.458·19-s − 0.280·21-s − 2.01·22-s + 1.84·23-s − 0.272·24-s + 0.512·26-s − 0.541·27-s + 2.18·28-s + 1.17·29-s − 0.104·31-s + 1.06·32-s + 0.274·33-s − 1.51·34-s + ⋯ |
Λ(s)=(=(902500s/2ΓC(s)2L(s)Λ(4−s)
Λ(s)=(=(902500s/2ΓC(s+3/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
902500
= 22⋅54⋅192
|
Sign: |
1
|
Analytic conductor: |
3141.80 |
Root analytic conductor: |
7.48677 |
Motivic weight: |
3 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 902500, ( :3/2,3/2), 1)
|
Particular Values
L(2) |
≈ |
11.07667592 |
L(21) |
≈ |
11.07667592 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C1 | (1−pT)2 |
| 5 | | 1 |
| 19 | C1 | (1−pT)2 |
good | 3 | D4 | 1+T−8pT2+p3T3+p6T4 |
| 7 | D4 | 1−27T+790T2−27p3T3+p6T4 |
| 11 | D4 | 1+52T+2086T2+52p3T3+p6T4 |
| 13 | D4 | 1−17T+3762T2−17p3T3+p6T4 |
| 17 | D4 | 1+75T+10528T2+75p3T3+p6T4 |
| 23 | D4 | 1−203T+30802T2−203p3T3+p6T4 |
| 29 | D4 | 1−183T+50812T2−183p3T3+p6T4 |
| 31 | D4 | 1+18T+6766T2+18p3T3+p6T4 |
| 37 | D4 | 1+78T+64954T2+78p3T3+p6T4 |
| 41 | C2 | (1−390T+p3T2)2 |
| 43 | D4 | 1+338T+187262T2+338p3T3+p6T4 |
| 47 | D4 | 1+24T+162718T2+24p3T3+p6T4 |
| 53 | D4 | 1−T+77950T2−p3T3+p6T4 |
| 59 | D4 | 1+687T+370294T2+687p3T3+p6T4 |
| 61 | D4 | 1+1222T+811946T2+1222p3T3+p6T4 |
| 67 | D4 | 1−43T+250724T2−43p3T3+p6T4 |
| 71 | D4 | 1−1500T+1176910T2−1500p3T3+p6T4 |
| 73 | D4 | 1−983T+900588T2−983p3T3+p6T4 |
| 79 | D4 | 1−750T+1126390T2−750p3T3+p6T4 |
| 83 | D4 | 1+1010T+819862T2+1010p3T3+p6T4 |
| 89 | D4 | 1−164T+810694T2−164p3T3+p6T4 |
| 97 | D4 | 1−954T+1301362T2−954p3T3+p6T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.970142502673178543521706429951, −9.568975185464477067828508893448, −8.962102782033766914122155121963, −8.515577894766183633104227004063, −7.985851859228781972512507727804, −7.50089586082315143029449144745, −7.48062792106666494278073985435, −6.83372359829170419262197063014, −6.15851405718921442167246758724, −6.11911590948591655652302054274, −5.13464245421887092332178388995, −4.95956734496589551197580896164, −4.77215001675389421853622134617, −4.33082836982738947756603490264, −3.60713698357389011860136956416, −3.05531948206261635909907604664, −2.50328471731616364515862116782, −1.94780221624124080936063720390, −1.35088218372709137864397903339, −0.68115266220540391884769402820,
0.68115266220540391884769402820, 1.35088218372709137864397903339, 1.94780221624124080936063720390, 2.50328471731616364515862116782, 3.05531948206261635909907604664, 3.60713698357389011860136956416, 4.33082836982738947756603490264, 4.77215001675389421853622134617, 4.95956734496589551197580896164, 5.13464245421887092332178388995, 6.11911590948591655652302054274, 6.15851405718921442167246758724, 6.83372359829170419262197063014, 7.48062792106666494278073985435, 7.50089586082315143029449144745, 7.985851859228781972512507727804, 8.515577894766183633104227004063, 8.962102782033766914122155121963, 9.568975185464477067828508893448, 9.970142502673178543521706429951