Properties

Label 4-950e2-1.1-c3e2-0-1
Degree $4$
Conductor $902500$
Sign $1$
Analytic cond. $3141.80$
Root an. cond. $7.48677$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·4-s + 38·9-s − 88·11-s + 16·16-s − 38·19-s + 324·29-s − 624·31-s − 152·36-s + 68·41-s + 352·44-s + 286·49-s − 728·59-s + 1.03e3·61-s − 64·64-s + 640·71-s + 152·76-s + 2.41e3·79-s + 715·81-s + 2.04e3·89-s − 3.34e3·99-s − 1.79e3·101-s − 2.09e3·109-s − 1.29e3·116-s + 3.14e3·121-s + 2.49e3·124-s + 127-s + 131-s + ⋯
L(s)  = 1  − 1/2·4-s + 1.40·9-s − 2.41·11-s + 1/4·16-s − 0.458·19-s + 2.07·29-s − 3.61·31-s − 0.703·36-s + 0.259·41-s + 1.20·44-s + 0.833·49-s − 1.60·59-s + 2.17·61-s − 1/8·64-s + 1.06·71-s + 0.229·76-s + 3.44·79-s + 0.980·81-s + 2.43·89-s − 3.39·99-s − 1.76·101-s − 1.83·109-s − 1.03·116-s + 2.36·121-s + 1.80·124-s + 0.000698·127-s + 0.000666·131-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 902500 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 902500 ^{s/2} \, \Gamma_{\C}(s+3/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(902500\)    =    \(2^{2} \cdot 5^{4} \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(3141.80\)
Root analytic conductor: \(7.48677\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 902500,\ (\ :3/2, 3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.312217700\)
\(L(\frac12)\) \(\approx\) \(1.312217700\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + p^{2} T^{2} \)
5 \( 1 \)
19$C_1$ \( ( 1 + p T )^{2} \)
good3$C_2^2$ \( 1 - 38 T^{2} + p^{6} T^{4} \)
7$C_2^2$ \( 1 - 286 T^{2} + p^{6} T^{4} \)
11$C_2$ \( ( 1 + 4 p T + p^{3} T^{2} )^{2} \)
13$C_2^2$ \( 1 - 2630 T^{2} + p^{6} T^{4} \)
17$C_2^2$ \( 1 - 2430 T^{2} + p^{6} T^{4} \)
23$C_2^2$ \( 1 + 2562 T^{2} + p^{6} T^{4} \)
29$C_2$ \( ( 1 - 162 T + p^{3} T^{2} )^{2} \)
31$C_2$ \( ( 1 + 312 T + p^{3} T^{2} )^{2} \)
37$C_2^2$ \( 1 - 50230 T^{2} + p^{6} T^{4} \)
41$C_2$ \( ( 1 - 34 T + p^{3} T^{2} )^{2} \)
43$C_2^2$ \( 1 + 27610 T^{2} + p^{6} T^{4} \)
47$C_2^2$ \( 1 + 128754 T^{2} + p^{6} T^{4} \)
53$C_2^2$ \( 1 - 41718 T^{2} + p^{6} T^{4} \)
59$C_2$ \( ( 1 + 364 T + p^{3} T^{2} )^{2} \)
61$C_2$ \( ( 1 - 518 T + p^{3} T^{2} )^{2} \)
67$C_2^2$ \( 1 + 252250 T^{2} + p^{6} T^{4} \)
71$C_2$ \( ( 1 - 320 T + p^{3} T^{2} )^{2} \)
73$C_2^2$ \( 1 - 484270 T^{2} + p^{6} T^{4} \)
79$C_2$ \( ( 1 - 1208 T + p^{3} T^{2} )^{2} \)
83$C_2^2$ \( 1 + 110826 T^{2} + p^{6} T^{4} \)
89$C_2$ \( ( 1 - 1022 T + p^{3} T^{2} )^{2} \)
97$C_2^2$ \( 1 - 465790 T^{2} + p^{6} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.882721140005250697826044375749, −9.401091254797735589634204044887, −9.183769785699725115909318318797, −8.581470023089136208719360511137, −8.062665340537514203129447348305, −7.75009936945931162017649807694, −7.55368864538176865495321368123, −6.78130466521080935894303728682, −6.72177131456271208666227611312, −5.82886638171804293756282590521, −5.42394012778622198073007603905, −4.91598918117742613558666823765, −4.84685854497597558147563005285, −3.92651949796314032549333748919, −3.75363955329574058965639566199, −2.96897344424761143363456060342, −2.29956341570017540144513040906, −1.95274250460059837051992414129, −1.01310994925174928615743872480, −0.33415302523609919438880253279, 0.33415302523609919438880253279, 1.01310994925174928615743872480, 1.95274250460059837051992414129, 2.29956341570017540144513040906, 2.96897344424761143363456060342, 3.75363955329574058965639566199, 3.92651949796314032549333748919, 4.84685854497597558147563005285, 4.91598918117742613558666823765, 5.42394012778622198073007603905, 5.82886638171804293756282590521, 6.72177131456271208666227611312, 6.78130466521080935894303728682, 7.55368864538176865495321368123, 7.75009936945931162017649807694, 8.062665340537514203129447348305, 8.581470023089136208719360511137, 9.183769785699725115909318318797, 9.401091254797735589634204044887, 9.882721140005250697826044375749

Graph of the $Z$-function along the critical line