L(s) = 1 | − 4·4-s + 38·9-s − 88·11-s + 16·16-s − 38·19-s + 324·29-s − 624·31-s − 152·36-s + 68·41-s + 352·44-s + 286·49-s − 728·59-s + 1.03e3·61-s − 64·64-s + 640·71-s + 152·76-s + 2.41e3·79-s + 715·81-s + 2.04e3·89-s − 3.34e3·99-s − 1.79e3·101-s − 2.09e3·109-s − 1.29e3·116-s + 3.14e3·121-s + 2.49e3·124-s + 127-s + 131-s + ⋯ |
L(s) = 1 | − 1/2·4-s + 1.40·9-s − 2.41·11-s + 1/4·16-s − 0.458·19-s + 2.07·29-s − 3.61·31-s − 0.703·36-s + 0.259·41-s + 1.20·44-s + 0.833·49-s − 1.60·59-s + 2.17·61-s − 1/8·64-s + 1.06·71-s + 0.229·76-s + 3.44·79-s + 0.980·81-s + 2.43·89-s − 3.39·99-s − 1.76·101-s − 1.83·109-s − 1.03·116-s + 2.36·121-s + 1.80·124-s + 0.000698·127-s + 0.000666·131-s + ⋯ |
Λ(s)=(=(902500s/2ΓC(s)2L(s)Λ(4−s)
Λ(s)=(=(902500s/2ΓC(s+3/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
902500
= 22⋅54⋅192
|
Sign: |
1
|
Analytic conductor: |
3141.80 |
Root analytic conductor: |
7.48677 |
Motivic weight: |
3 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 902500, ( :3/2,3/2), 1)
|
Particular Values
L(2) |
≈ |
1.312217700 |
L(21) |
≈ |
1.312217700 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C2 | 1+p2T2 |
| 5 | | 1 |
| 19 | C1 | (1+pT)2 |
good | 3 | C22 | 1−38T2+p6T4 |
| 7 | C22 | 1−286T2+p6T4 |
| 11 | C2 | (1+4pT+p3T2)2 |
| 13 | C22 | 1−2630T2+p6T4 |
| 17 | C22 | 1−2430T2+p6T4 |
| 23 | C22 | 1+2562T2+p6T4 |
| 29 | C2 | (1−162T+p3T2)2 |
| 31 | C2 | (1+312T+p3T2)2 |
| 37 | C22 | 1−50230T2+p6T4 |
| 41 | C2 | (1−34T+p3T2)2 |
| 43 | C22 | 1+27610T2+p6T4 |
| 47 | C22 | 1+128754T2+p6T4 |
| 53 | C22 | 1−41718T2+p6T4 |
| 59 | C2 | (1+364T+p3T2)2 |
| 61 | C2 | (1−518T+p3T2)2 |
| 67 | C22 | 1+252250T2+p6T4 |
| 71 | C2 | (1−320T+p3T2)2 |
| 73 | C22 | 1−484270T2+p6T4 |
| 79 | C2 | (1−1208T+p3T2)2 |
| 83 | C22 | 1+110826T2+p6T4 |
| 89 | C2 | (1−1022T+p3T2)2 |
| 97 | C22 | 1−465790T2+p6T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.882721140005250697826044375749, −9.401091254797735589634204044887, −9.183769785699725115909318318797, −8.581470023089136208719360511137, −8.062665340537514203129447348305, −7.75009936945931162017649807694, −7.55368864538176865495321368123, −6.78130466521080935894303728682, −6.72177131456271208666227611312, −5.82886638171804293756282590521, −5.42394012778622198073007603905, −4.91598918117742613558666823765, −4.84685854497597558147563005285, −3.92651949796314032549333748919, −3.75363955329574058965639566199, −2.96897344424761143363456060342, −2.29956341570017540144513040906, −1.95274250460059837051992414129, −1.01310994925174928615743872480, −0.33415302523609919438880253279,
0.33415302523609919438880253279, 1.01310994925174928615743872480, 1.95274250460059837051992414129, 2.29956341570017540144513040906, 2.96897344424761143363456060342, 3.75363955329574058965639566199, 3.92651949796314032549333748919, 4.84685854497597558147563005285, 4.91598918117742613558666823765, 5.42394012778622198073007603905, 5.82886638171804293756282590521, 6.72177131456271208666227611312, 6.78130466521080935894303728682, 7.55368864538176865495321368123, 7.75009936945931162017649807694, 8.062665340537514203129447348305, 8.581470023089136208719360511137, 9.183769785699725115909318318797, 9.401091254797735589634204044887, 9.882721140005250697826044375749