L(s) = 1 | + 2·2-s + 3-s + 3·4-s + 2·6-s + 7-s + 4·8-s − 9-s + 8·11-s + 3·12-s + 13-s + 2·14-s + 5·16-s − 11·17-s − 2·18-s − 2·19-s + 21-s + 16·22-s − 3·23-s + 4·24-s + 2·26-s + 3·28-s + 29-s − 2·31-s + 6·32-s + 8·33-s − 22·34-s − 3·36-s + ⋯ |
L(s) = 1 | + 1.41·2-s + 0.577·3-s + 3/2·4-s + 0.816·6-s + 0.377·7-s + 1.41·8-s − 1/3·9-s + 2.41·11-s + 0.866·12-s + 0.277·13-s + 0.534·14-s + 5/4·16-s − 2.66·17-s − 0.471·18-s − 0.458·19-s + 0.218·21-s + 3.41·22-s − 0.625·23-s + 0.816·24-s + 0.392·26-s + 0.566·28-s + 0.185·29-s − 0.359·31-s + 1.06·32-s + 1.39·33-s − 3.77·34-s − 1/2·36-s + ⋯ |
Λ(s)=(=(902500s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(902500s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
902500
= 22⋅54⋅192
|
Sign: |
1
|
Analytic conductor: |
57.5441 |
Root analytic conductor: |
2.75423 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 902500, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
7.526327402 |
L(21) |
≈ |
7.526327402 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C1 | (1−T)2 |
| 5 | | 1 |
| 19 | C1 | (1+T)2 |
good | 3 | D4 | 1−T+2T2−pT3+p2T4 |
| 7 | D4 | 1−T+10T2−pT3+p2T4 |
| 11 | C2 | (1−4T+pT2)2 |
| 13 | C22 | 1−T−12T2−pT3+p2T4 |
| 17 | D4 | 1+11T+60T2+11pT3+p2T4 |
| 23 | D4 | 1+3T+10T2+3pT3+p2T4 |
| 29 | D4 | 1−T+20T2−pT3+p2T4 |
| 31 | D4 | 1+2T+46T2+2pT3+p2T4 |
| 37 | C2 | (1−6T+pT2)2 |
| 41 | D4 | 1−8T+30T2−8pT3+p2T4 |
| 43 | D4 | 1−14T+118T2−14pT3+p2T4 |
| 47 | D4 | 1−4T+30T2−4pT3+p2T4 |
| 53 | D4 | 1−5T+108T2−5pT3+p2T4 |
| 59 | D4 | 1−T+114T2−pT3+p2T4 |
| 61 | D4 | 1−14T+154T2−14pT3+p2T4 |
| 67 | D4 | 1−T+130T2−pT3+p2T4 |
| 71 | D4 | 1−4T+78T2−4pT3+p2T4 |
| 73 | D4 | 1+9T+128T2+9pT3+p2T4 |
| 79 | D4 | 1+2T+142T2+2pT3+p2T4 |
| 83 | D4 | 1+14T+198T2+14pT3+p2T4 |
| 89 | C2 | (1−2T+pT2)2 |
| 97 | C2 | (1+6T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.40509723935053206255780021760, −9.730747983450564972363666958319, −9.269461802051136599333512278135, −9.030349635085689639443277468277, −8.607425023989674458271902987602, −8.218481723170876935839658217475, −7.63377684795684572540054953690, −7.00515204683514271804791357069, −6.80217316125886040642651172131, −6.25170554024009670678048785667, −6.06325101073125175662248675889, −5.56507900355847824074066298697, −4.67093250850662199388310576228, −4.34525009015419484453738364839, −3.94670328982411401578264404479, −3.90135760216719732222356982045, −2.76636362403408315057351541959, −2.48187998105717011530260448552, −1.88554258137734670923623349210, −1.06121728191310280520996406203,
1.06121728191310280520996406203, 1.88554258137734670923623349210, 2.48187998105717011530260448552, 2.76636362403408315057351541959, 3.90135760216719732222356982045, 3.94670328982411401578264404479, 4.34525009015419484453738364839, 4.67093250850662199388310576228, 5.56507900355847824074066298697, 6.06325101073125175662248675889, 6.25170554024009670678048785667, 6.80217316125886040642651172131, 7.00515204683514271804791357069, 7.63377684795684572540054953690, 8.218481723170876935839658217475, 8.607425023989674458271902987602, 9.030349635085689639443277468277, 9.269461802051136599333512278135, 9.730747983450564972363666958319, 10.40509723935053206255780021760