Properties

Label 4-950e2-1.1-c1e2-0-6
Degree $4$
Conductor $902500$
Sign $1$
Analytic cond. $57.5441$
Root an. cond. $2.75423$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4-s + 5·9-s + 16-s − 2·19-s + 6·29-s + 4·31-s − 5·36-s + 12·41-s + 13·49-s − 6·59-s + 16·61-s − 64-s + 24·71-s + 2·76-s − 28·79-s + 16·81-s − 12·89-s + 24·101-s − 22·109-s − 6·116-s − 22·121-s − 4·124-s + 127-s + 131-s + 137-s + 139-s + 5·144-s + ⋯
L(s)  = 1  − 1/2·4-s + 5/3·9-s + 1/4·16-s − 0.458·19-s + 1.11·29-s + 0.718·31-s − 5/6·36-s + 1.87·41-s + 13/7·49-s − 0.781·59-s + 2.04·61-s − 1/8·64-s + 2.84·71-s + 0.229·76-s − 3.15·79-s + 16/9·81-s − 1.27·89-s + 2.38·101-s − 2.10·109-s − 0.557·116-s − 2·121-s − 0.359·124-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 5/12·144-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 902500 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 902500 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(902500\)    =    \(2^{2} \cdot 5^{4} \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(57.5441\)
Root analytic conductor: \(2.75423\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 902500,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.248811955\)
\(L(\frac12)\) \(\approx\) \(2.248811955\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + T^{2} \)
5 \( 1 \)
19$C_1$ \( ( 1 + T )^{2} \)
good3$C_2^2$ \( 1 - 5 T^{2} + p^{2} T^{4} \)
7$C_2^2$ \( 1 - 13 T^{2} + p^{2} T^{4} \)
11$C_2$ \( ( 1 + p T^{2} )^{2} \)
13$C_2^2$ \( 1 - 25 T^{2} + p^{2} T^{4} \)
17$C_2^2$ \( 1 - 25 T^{2} + p^{2} T^{4} \)
23$C_2^2$ \( 1 - 37 T^{2} + p^{2} T^{4} \)
29$C_2$ \( ( 1 - 3 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
37$C_2^2$ \( 1 + 26 T^{2} + p^{2} T^{4} \)
41$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
43$C_2^2$ \( 1 - 82 T^{2} + p^{2} T^{4} \)
47$C_2$ \( ( 1 - p T^{2} )^{2} \)
53$C_2^2$ \( 1 - 97 T^{2} + p^{2} T^{4} \)
59$C_2$ \( ( 1 + 3 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
67$C_2^2$ \( 1 - 85 T^{2} + p^{2} T^{4} \)
71$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
73$C_2^2$ \( 1 + 23 T^{2} + p^{2} T^{4} \)
79$C_2$ \( ( 1 + 14 T + p T^{2} )^{2} \)
83$C_2^2$ \( 1 - 130 T^{2} + p^{2} T^{4} \)
89$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
97$C_2^2$ \( 1 - 94 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.14412570831628558915944559515, −9.871140753453987620504090159995, −9.499938893504928702570356864974, −9.022994393690980526882549759416, −8.632754664683448521621364142105, −8.112494231222844401996753182294, −7.80253861516502004887216369859, −7.27299756019718214529961900449, −6.79808793499429898924222457416, −6.62009187741297926155647777340, −5.84379151744724813970441112931, −5.55267944731353413432100877937, −4.71600772933333300382195326786, −4.60404974447699729840986976376, −3.90831902467415936018583668795, −3.80258792603032100861754452958, −2.71880443125033685463285670275, −2.34385773632888722896866027426, −1.37013021504630416699966885410, −0.803118169931028016795268971038, 0.803118169931028016795268971038, 1.37013021504630416699966885410, 2.34385773632888722896866027426, 2.71880443125033685463285670275, 3.80258792603032100861754452958, 3.90831902467415936018583668795, 4.60404974447699729840986976376, 4.71600772933333300382195326786, 5.55267944731353413432100877937, 5.84379151744724813970441112931, 6.62009187741297926155647777340, 6.79808793499429898924222457416, 7.27299756019718214529961900449, 7.80253861516502004887216369859, 8.112494231222844401996753182294, 8.632754664683448521621364142105, 9.022994393690980526882549759416, 9.499938893504928702570356864974, 9.871140753453987620504090159995, 10.14412570831628558915944559515

Graph of the $Z$-function along the critical line