L(s) = 1 | − 4-s + 5·9-s + 16-s − 2·19-s + 6·29-s + 4·31-s − 5·36-s + 12·41-s + 13·49-s − 6·59-s + 16·61-s − 64-s + 24·71-s + 2·76-s − 28·79-s + 16·81-s − 12·89-s + 24·101-s − 22·109-s − 6·116-s − 22·121-s − 4·124-s + 127-s + 131-s + 137-s + 139-s + 5·144-s + ⋯ |
L(s) = 1 | − 1/2·4-s + 5/3·9-s + 1/4·16-s − 0.458·19-s + 1.11·29-s + 0.718·31-s − 5/6·36-s + 1.87·41-s + 13/7·49-s − 0.781·59-s + 2.04·61-s − 1/8·64-s + 2.84·71-s + 0.229·76-s − 3.15·79-s + 16/9·81-s − 1.27·89-s + 2.38·101-s − 2.10·109-s − 0.557·116-s − 2·121-s − 0.359·124-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 5/12·144-s + ⋯ |
Λ(s)=(=(902500s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(902500s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
902500
= 22⋅54⋅192
|
Sign: |
1
|
Analytic conductor: |
57.5441 |
Root analytic conductor: |
2.75423 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 902500, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
2.248811955 |
L(21) |
≈ |
2.248811955 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C2 | 1+T2 |
| 5 | | 1 |
| 19 | C1 | (1+T)2 |
good | 3 | C22 | 1−5T2+p2T4 |
| 7 | C22 | 1−13T2+p2T4 |
| 11 | C2 | (1+pT2)2 |
| 13 | C22 | 1−25T2+p2T4 |
| 17 | C22 | 1−25T2+p2T4 |
| 23 | C22 | 1−37T2+p2T4 |
| 29 | C2 | (1−3T+pT2)2 |
| 31 | C2 | (1−2T+pT2)2 |
| 37 | C22 | 1+26T2+p2T4 |
| 41 | C2 | (1−6T+pT2)2 |
| 43 | C22 | 1−82T2+p2T4 |
| 47 | C2 | (1−pT2)2 |
| 53 | C22 | 1−97T2+p2T4 |
| 59 | C2 | (1+3T+pT2)2 |
| 61 | C2 | (1−8T+pT2)2 |
| 67 | C22 | 1−85T2+p2T4 |
| 71 | C2 | (1−12T+pT2)2 |
| 73 | C22 | 1+23T2+p2T4 |
| 79 | C2 | (1+14T+pT2)2 |
| 83 | C22 | 1−130T2+p2T4 |
| 89 | C2 | (1+6T+pT2)2 |
| 97 | C22 | 1−94T2+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.14412570831628558915944559515, −9.871140753453987620504090159995, −9.499938893504928702570356864974, −9.022994393690980526882549759416, −8.632754664683448521621364142105, −8.112494231222844401996753182294, −7.80253861516502004887216369859, −7.27299756019718214529961900449, −6.79808793499429898924222457416, −6.62009187741297926155647777340, −5.84379151744724813970441112931, −5.55267944731353413432100877937, −4.71600772933333300382195326786, −4.60404974447699729840986976376, −3.90831902467415936018583668795, −3.80258792603032100861754452958, −2.71880443125033685463285670275, −2.34385773632888722896866027426, −1.37013021504630416699966885410, −0.803118169931028016795268971038,
0.803118169931028016795268971038, 1.37013021504630416699966885410, 2.34385773632888722896866027426, 2.71880443125033685463285670275, 3.80258792603032100861754452958, 3.90831902467415936018583668795, 4.60404974447699729840986976376, 4.71600772933333300382195326786, 5.55267944731353413432100877937, 5.84379151744724813970441112931, 6.62009187741297926155647777340, 6.79808793499429898924222457416, 7.27299756019718214529961900449, 7.80253861516502004887216369859, 8.112494231222844401996753182294, 8.632754664683448521621364142105, 9.022994393690980526882549759416, 9.499938893504928702570356864974, 9.871140753453987620504090159995, 10.14412570831628558915944559515