Properties

Label 4-950e2-1.1-c1e2-0-3
Degree $4$
Conductor $902500$
Sign $1$
Analytic cond. $57.5441$
Root an. cond. $2.75423$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4-s + 5·9-s − 12·11-s + 16-s − 2·19-s − 18·29-s − 8·31-s − 5·36-s + 12·44-s + 13·49-s − 18·59-s − 20·61-s − 64-s − 12·71-s + 2·76-s + 20·79-s + 16·81-s + 24·89-s − 60·99-s + 36·101-s − 22·109-s + 18·116-s + 86·121-s + 8·124-s + 127-s + 131-s + 137-s + ⋯
L(s)  = 1  − 1/2·4-s + 5/3·9-s − 3.61·11-s + 1/4·16-s − 0.458·19-s − 3.34·29-s − 1.43·31-s − 5/6·36-s + 1.80·44-s + 13/7·49-s − 2.34·59-s − 2.56·61-s − 1/8·64-s − 1.42·71-s + 0.229·76-s + 2.25·79-s + 16/9·81-s + 2.54·89-s − 6.03·99-s + 3.58·101-s − 2.10·109-s + 1.67·116-s + 7.81·121-s + 0.718·124-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 902500 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 902500 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(902500\)    =    \(2^{2} \cdot 5^{4} \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(57.5441\)
Root analytic conductor: \(2.75423\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 902500,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.5785254096\)
\(L(\frac12)\) \(\approx\) \(0.5785254096\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + T^{2} \)
5 \( 1 \)
19$C_1$ \( ( 1 + T )^{2} \)
good3$C_2^2$ \( 1 - 5 T^{2} + p^{2} T^{4} \)
7$C_2^2$ \( 1 - 13 T^{2} + p^{2} T^{4} \)
11$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
13$C_2^2$ \( 1 - T^{2} + p^{2} T^{4} \)
17$C_2^2$ \( 1 - 25 T^{2} + p^{2} T^{4} \)
23$C_2^2$ \( 1 - 37 T^{2} + p^{2} T^{4} \)
29$C_2$ \( ( 1 + 9 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
41$C_2$ \( ( 1 + p T^{2} )^{2} \)
43$C_2^2$ \( 1 - 22 T^{2} + p^{2} T^{4} \)
47$C_2$ \( ( 1 - p T^{2} )^{2} \)
53$C_2^2$ \( 1 - 97 T^{2} + p^{2} T^{4} \)
59$C_2$ \( ( 1 + 9 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
67$C_2^2$ \( 1 - 109 T^{2} + p^{2} T^{4} \)
71$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
73$C_2^2$ \( 1 - 97 T^{2} + p^{2} T^{4} \)
79$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
83$C_2^2$ \( 1 - 130 T^{2} + p^{2} T^{4} \)
89$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
97$C_2^2$ \( 1 - 94 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.42424864242956759141114593136, −9.876017528067997263728010117759, −9.363353566030147453465344299148, −9.139184014635326537383955715586, −8.660162121413821916064949680429, −7.77612921283094186400315734487, −7.72984663965283997999488472376, −7.36968635601476475027561036474, −7.36655446060614346946881406783, −6.18205371221264052512287134121, −5.94588866048212482367291290365, −5.20581549300400466359991490832, −5.15246677623423518985594486824, −4.60657500121310258618406628634, −4.01447318220950203180659533846, −3.48119750726470909916394202472, −2.89482614234160538226307188203, −2.04124522009189983557643337644, −1.83976765163521167928633654641, −0.33900283762510085792816425473, 0.33900283762510085792816425473, 1.83976765163521167928633654641, 2.04124522009189983557643337644, 2.89482614234160538226307188203, 3.48119750726470909916394202472, 4.01447318220950203180659533846, 4.60657500121310258618406628634, 5.15246677623423518985594486824, 5.20581549300400466359991490832, 5.94588866048212482367291290365, 6.18205371221264052512287134121, 7.36655446060614346946881406783, 7.36968635601476475027561036474, 7.72984663965283997999488472376, 7.77612921283094186400315734487, 8.660162121413821916064949680429, 9.139184014635326537383955715586, 9.363353566030147453465344299148, 9.876017528067997263728010117759, 10.42424864242956759141114593136

Graph of the $Z$-function along the critical line