L(s) = 1 | − 4-s − 3·9-s − 8·11-s + 16-s − 2·19-s + 6·29-s − 4·31-s + 3·36-s − 12·41-s + 8·44-s − 11·49-s + 18·59-s − 24·61-s − 64-s + 2·76-s + 4·79-s − 4·89-s + 24·99-s − 16·101-s − 38·109-s − 6·116-s + 26·121-s + 4·124-s + 127-s + 131-s + 137-s + 139-s + ⋯ |
L(s) = 1 | − 1/2·4-s − 9-s − 2.41·11-s + 1/4·16-s − 0.458·19-s + 1.11·29-s − 0.718·31-s + 1/2·36-s − 1.87·41-s + 1.20·44-s − 1.57·49-s + 2.34·59-s − 3.07·61-s − 1/8·64-s + 0.229·76-s + 0.450·79-s − 0.423·89-s + 2.41·99-s − 1.59·101-s − 3.63·109-s − 0.557·116-s + 2.36·121-s + 0.359·124-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + ⋯ |
Λ(s)=(=(902500s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(902500s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
902500
= 22⋅54⋅192
|
Sign: |
1
|
Analytic conductor: |
57.5441 |
Root analytic conductor: |
2.75423 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 902500, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
0.3270177496 |
L(21) |
≈ |
0.3270177496 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C2 | 1+T2 |
| 5 | | 1 |
| 19 | C1 | (1+T)2 |
good | 3 | C22 | 1+pT2+p2T4 |
| 7 | C22 | 1+11T2+p2T4 |
| 11 | C2 | (1+4T+pT2)2 |
| 13 | C22 | 1−25T2+p2T4 |
| 17 | C22 | 1−25T2+p2T4 |
| 23 | C22 | 1+3T2+p2T4 |
| 29 | C2 | (1−3T+pT2)2 |
| 31 | C2 | (1+2T+pT2)2 |
| 37 | C2 | (1−12T+pT2)(1+12T+pT2) |
| 41 | C2 | (1+6T+pT2)2 |
| 43 | C22 | 1−50T2+p2T4 |
| 47 | C2 | (1−pT2)2 |
| 53 | C22 | 1+63T2+p2T4 |
| 59 | C2 | (1−9T+pT2)2 |
| 61 | C2 | (1+12T+pT2)2 |
| 67 | C22 | 1−125T2+p2T4 |
| 71 | C2 | (1+pT2)2 |
| 73 | C22 | 1−25T2+p2T4 |
| 79 | C2 | (1−2T+pT2)2 |
| 83 | C22 | 1−66T2+p2T4 |
| 89 | C2 | (1+2T+pT2)2 |
| 97 | C22 | 1−190T2+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.15016545704303514162933428331, −10.13005754909113889890701048623, −9.244549850815312309721075645447, −9.093704631429224472444185127512, −8.340239925267233839920725068411, −8.267657670479892378188304515591, −7.900926595129397868586337442323, −7.48816219465705187636854610825, −6.64126552377188817121822222429, −6.59378533420009187135711703750, −5.72012460110250655705893751189, −5.33685527201188894107005962850, −5.21063747931156207296261021631, −4.59185789638246659387353467167, −4.06614574231571688955308805184, −3.17293555578459101267045758585, −2.98335211476737464017735058856, −2.39703959808082716387771161589, −1.60717875927706914596224029356, −0.25849936757337310997818913150,
0.25849936757337310997818913150, 1.60717875927706914596224029356, 2.39703959808082716387771161589, 2.98335211476737464017735058856, 3.17293555578459101267045758585, 4.06614574231571688955308805184, 4.59185789638246659387353467167, 5.21063747931156207296261021631, 5.33685527201188894107005962850, 5.72012460110250655705893751189, 6.59378533420009187135711703750, 6.64126552377188817121822222429, 7.48816219465705187636854610825, 7.900926595129397868586337442323, 8.267657670479892378188304515591, 8.340239925267233839920725068411, 9.093704631429224472444185127512, 9.244549850815312309721075645447, 10.13005754909113889890701048623, 10.15016545704303514162933428331