L(s) = 1 | + 2-s + 3-s + 6-s + 4·7-s − 8-s + 3·9-s + 6·13-s + 4·14-s − 16-s + 7·17-s + 3·18-s + 7·19-s + 4·21-s + 2·23-s − 24-s + 6·26-s + 8·27-s − 10·29-s − 4·31-s + 7·34-s − 8·37-s + 7·38-s + 6·39-s − 2·41-s + 4·42-s − 12·43-s + 2·46-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 0.577·3-s + 0.408·6-s + 1.51·7-s − 0.353·8-s + 9-s + 1.66·13-s + 1.06·14-s − 1/4·16-s + 1.69·17-s + 0.707·18-s + 1.60·19-s + 0.872·21-s + 0.417·23-s − 0.204·24-s + 1.17·26-s + 1.53·27-s − 1.85·29-s − 0.718·31-s + 1.20·34-s − 1.31·37-s + 1.13·38-s + 0.960·39-s − 0.312·41-s + 0.617·42-s − 1.82·43-s + 0.294·46-s + ⋯ |
Λ(s)=(=(902500s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(902500s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
902500
= 22⋅54⋅192
|
Sign: |
1
|
Analytic conductor: |
57.5441 |
Root analytic conductor: |
2.75423 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 902500, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
5.723171739 |
L(21) |
≈ |
5.723171739 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C2 | 1−T+T2 |
| 5 | | 1 |
| 19 | C2 | 1−7T+pT2 |
good | 3 | C22 | 1−T−2T2−pT3+p2T4 |
| 7 | C2 | (1−2T+pT2)2 |
| 11 | C2 | (1+pT2)2 |
| 13 | C22 | 1−6T+23T2−6pT3+p2T4 |
| 17 | C22 | 1−7T+32T2−7pT3+p2T4 |
| 23 | C22 | 1−2T−19T2−2pT3+p2T4 |
| 29 | C22 | 1+10T+71T2+10pT3+p2T4 |
| 31 | C2 | (1+2T+pT2)2 |
| 37 | C2 | (1+4T+pT2)2 |
| 41 | C22 | 1+2T−37T2+2pT3+p2T4 |
| 43 | C22 | 1+12T+101T2+12pT3+p2T4 |
| 47 | C22 | 1−pT2+p2T4 |
| 53 | C22 | 1−pT2+p2T4 |
| 59 | C22 | 1−T−58T2−pT3+p2T4 |
| 61 | C22 | 1+8T+3T2+8pT3+p2T4 |
| 67 | C22 | 1−8T−3T2−8pT3+p2T4 |
| 71 | C22 | 1−12T+73T2−12pT3+p2T4 |
| 73 | C22 | 1+3T−64T2+3pT3+p2T4 |
| 79 | C2 | (1−17T+pT2)(1+13T+pT2) |
| 83 | C2 | (1−13T+pT2)2 |
| 89 | C22 | 1−13T+80T2−13pT3+p2T4 |
| 97 | C22 | 1−15T+128T2−15pT3+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.34599039577363938155291269900, −9.753896958038120181784811519343, −9.257148210482455452088647790531, −9.180718358012264093291878714398, −8.395764872650266971956110983382, −8.119250635477307103428660859525, −7.82417661959673157211801893168, −7.43396729172931931625275618412, −6.79156902407378647287619746137, −6.50209472958931857661344709605, −5.68040130349886059775860832322, −5.23211496517706792481320258497, −5.15097657793165521358766752593, −4.58659887787054676319870682825, −3.73999173967527726462976642243, −3.40874993968444127245205612980, −3.39247267870296325394236208298, −2.17986438884057206823037595684, −1.39439241757736951094852567552, −1.27015546854278142233877311079,
1.27015546854278142233877311079, 1.39439241757736951094852567552, 2.17986438884057206823037595684, 3.39247267870296325394236208298, 3.40874993968444127245205612980, 3.73999173967527726462976642243, 4.58659887787054676319870682825, 5.15097657793165521358766752593, 5.23211496517706792481320258497, 5.68040130349886059775860832322, 6.50209472958931857661344709605, 6.79156902407378647287619746137, 7.43396729172931931625275618412, 7.82417661959673157211801893168, 8.119250635477307103428660859525, 8.395764872650266971956110983382, 9.180718358012264093291878714398, 9.257148210482455452088647790531, 9.753896958038120181784811519343, 10.34599039577363938155291269900