L(s) = 1 | − 2-s + 3-s − 6-s + 8·7-s + 8-s + 3·9-s + 6·11-s + 2·13-s − 8·14-s − 16-s − 6·17-s − 3·18-s − 7·19-s + 8·21-s − 6·22-s − 6·23-s + 24-s − 2·26-s + 8·27-s + 4·31-s + 6·33-s + 6·34-s + 20·37-s + 7·38-s + 2·39-s − 9·41-s − 8·42-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 0.577·3-s − 0.408·6-s + 3.02·7-s + 0.353·8-s + 9-s + 1.80·11-s + 0.554·13-s − 2.13·14-s − 1/4·16-s − 1.45·17-s − 0.707·18-s − 1.60·19-s + 1.74·21-s − 1.27·22-s − 1.25·23-s + 0.204·24-s − 0.392·26-s + 1.53·27-s + 0.718·31-s + 1.04·33-s + 1.02·34-s + 3.28·37-s + 1.13·38-s + 0.320·39-s − 1.40·41-s − 1.23·42-s + ⋯ |
Λ(s)=(=(902500s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(902500s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
902500
= 22⋅54⋅192
|
Sign: |
1
|
Analytic conductor: |
57.5441 |
Root analytic conductor: |
2.75423 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 902500, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
3.189588774 |
L(21) |
≈ |
3.189588774 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C2 | 1+T+T2 |
| 5 | | 1 |
| 19 | C2 | 1+7T+pT2 |
good | 3 | C22 | 1−T−2T2−pT3+p2T4 |
| 7 | C2 | (1−4T+pT2)2 |
| 11 | C2 | (1−3T+pT2)2 |
| 13 | C2 | (1−7T+pT2)(1+5T+pT2) |
| 17 | C22 | 1+6T+19T2+6pT3+p2T4 |
| 23 | C22 | 1+6T+13T2+6pT3+p2T4 |
| 29 | C22 | 1−pT2+p2T4 |
| 31 | C2 | (1−2T+pT2)2 |
| 37 | C2 | (1−10T+pT2)2 |
| 41 | C22 | 1+9T+40T2+9pT3+p2T4 |
| 43 | C22 | 1+4T−27T2+4pT3+p2T4 |
| 47 | C22 | 1−pT2+p2T4 |
| 53 | C22 | 1−6T−17T2−6pT3+p2T4 |
| 59 | C22 | 1−9T+22T2−9pT3+p2T4 |
| 61 | C22 | 1−4T−45T2−4pT3+p2T4 |
| 67 | C22 | 1+7T−18T2+7pT3+p2T4 |
| 71 | C22 | 1−6T−35T2−6pT3+p2T4 |
| 73 | C22 | 1+T−72T2+pT3+p2T4 |
| 79 | C2 | (1−17T+pT2)(1+13T+pT2) |
| 83 | C2 | (1+3T+pT2)2 |
| 89 | C22 | 1+6T−53T2+6pT3+p2T4 |
| 97 | C22 | 1−17T+192T2−17pT3+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.09474199711844011687907176169, −9.946850356494535096082866129794, −9.149570185205668476990639362047, −8.874323509406739257606047355231, −8.519249016691948735719943177521, −8.345774465162069181527750648356, −7.81236668075384802346719820142, −7.69992835747480889570578386681, −6.72485337033489874047842306545, −6.68664673243537788932100393543, −6.15593470953801047883776310921, −5.36774904382666829579776527488, −4.65934366186294047675663120380, −4.33593392557876322772710668377, −4.30568778485884231597679763653, −3.73474008897104265396212364368, −2.30369861584046849330064066884, −2.19508762073766577431119049007, −1.39598196030327509443736632745, −1.12913565088584557117681843960,
1.12913565088584557117681843960, 1.39598196030327509443736632745, 2.19508762073766577431119049007, 2.30369861584046849330064066884, 3.73474008897104265396212364368, 4.30568778485884231597679763653, 4.33593392557876322772710668377, 4.65934366186294047675663120380, 5.36774904382666829579776527488, 6.15593470953801047883776310921, 6.68664673243537788932100393543, 6.72485337033489874047842306545, 7.69992835747480889570578386681, 7.81236668075384802346719820142, 8.345774465162069181527750648356, 8.519249016691948735719943177521, 8.874323509406739257606047355231, 9.149570185205668476990639362047, 9.946850356494535096082866129794, 10.09474199711844011687907176169