L(s) = 1 | − 2-s + 8·7-s + 8-s + 3·9-s − 2·11-s − 2·13-s − 8·14-s − 16-s + 3·17-s − 3·18-s + 8·19-s + 2·22-s − 4·23-s + 2·26-s + 6·29-s − 4·31-s − 3·34-s − 4·37-s − 8·38-s + 3·41-s + 12·43-s + 4·46-s + 6·47-s + 34·49-s + 4·53-s + 8·56-s − 6·58-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 3.02·7-s + 0.353·8-s + 9-s − 0.603·11-s − 0.554·13-s − 2.13·14-s − 1/4·16-s + 0.727·17-s − 0.707·18-s + 1.83·19-s + 0.426·22-s − 0.834·23-s + 0.392·26-s + 1.11·29-s − 0.718·31-s − 0.514·34-s − 0.657·37-s − 1.29·38-s + 0.468·41-s + 1.82·43-s + 0.589·46-s + 0.875·47-s + 34/7·49-s + 0.549·53-s + 1.06·56-s − 0.787·58-s + ⋯ |
Λ(s)=(=(902500s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(902500s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
902500
= 22⋅54⋅192
|
Sign: |
1
|
Analytic conductor: |
57.5441 |
Root analytic conductor: |
2.75423 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 902500, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
2.508289287 |
L(21) |
≈ |
2.508289287 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C2 | 1+T+T2 |
| 5 | | 1 |
| 19 | C2 | 1−8T+pT2 |
good | 3 | C2 | (1−pT+pT2)(1+pT+pT2) |
| 7 | C2 | (1−4T+pT2)2 |
| 11 | C2 | (1+T+pT2)2 |
| 13 | C2 | (1−5T+pT2)(1+7T+pT2) |
| 17 | C22 | 1−3T−8T2−3pT3+p2T4 |
| 23 | C22 | 1+4T−7T2+4pT3+p2T4 |
| 29 | C22 | 1−6T+7T2−6pT3+p2T4 |
| 31 | C2 | (1+2T+pT2)2 |
| 37 | C2 | (1+2T+pT2)2 |
| 41 | C22 | 1−3T−32T2−3pT3+p2T4 |
| 43 | C22 | 1−12T+101T2−12pT3+p2T4 |
| 47 | C22 | 1−6T−11T2−6pT3+p2T4 |
| 53 | C22 | 1−4T−37T2−4pT3+p2T4 |
| 59 | C22 | 1+9T+22T2+9pT3+p2T4 |
| 61 | C22 | 1−12T+83T2−12pT3+p2T4 |
| 67 | C22 | 1−15T+158T2−15pT3+p2T4 |
| 71 | C22 | 1+6T−35T2+6pT3+p2T4 |
| 73 | C2 | (1−17T+pT2)(1+7T+pT2) |
| 79 | C22 | 1−14T+117T2−14pT3+p2T4 |
| 83 | C2 | (1+4T+pT2)2 |
| 89 | C22 | 1−T−88T2−pT3+p2T4 |
| 97 | C22 | 1+T−96T2+pT3+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.38450045593392763058529638412, −9.806945868444657179890078391459, −9.331278319024421238205381058932, −9.131648018292945956548558624444, −8.304064873109822080349928709952, −8.160092209846945261948423177638, −7.74449496139154088767916504511, −7.59955754260840875186267303582, −7.16683350197101172488231284634, −6.64712956023782217981691171034, −5.58134872982081990061053675284, −5.37910592099521989355386862677, −5.13721948123108281567837603195, −4.48585311121576836448253852871, −4.21259459093084646413143670001, −3.55849083310874862777676318559, −2.47815361197550296732342454157, −2.13962698116482825132393866715, −1.21933920243924547826322587540, −1.09921874520690091350756836785,
1.09921874520690091350756836785, 1.21933920243924547826322587540, 2.13962698116482825132393866715, 2.47815361197550296732342454157, 3.55849083310874862777676318559, 4.21259459093084646413143670001, 4.48585311121576836448253852871, 5.13721948123108281567837603195, 5.37910592099521989355386862677, 5.58134872982081990061053675284, 6.64712956023782217981691171034, 7.16683350197101172488231284634, 7.59955754260840875186267303582, 7.74449496139154088767916504511, 8.160092209846945261948423177638, 8.304064873109822080349928709952, 9.131648018292945956548558624444, 9.331278319024421238205381058932, 9.806945868444657179890078391459, 10.38450045593392763058529638412