L(s) = 1 | − 4-s + 5·9-s + 16-s + 2·19-s + 10·29-s + 20·31-s − 5·36-s + 4·41-s + 13·49-s + 14·59-s − 8·61-s − 64-s − 2·76-s + 20·79-s + 16·81-s + 20·89-s − 8·101-s − 26·109-s − 10·116-s − 22·121-s − 20·124-s + 127-s + 131-s + 137-s + 139-s + 5·144-s + 149-s + ⋯ |
L(s) = 1 | − 1/2·4-s + 5/3·9-s + 1/4·16-s + 0.458·19-s + 1.85·29-s + 3.59·31-s − 5/6·36-s + 0.624·41-s + 13/7·49-s + 1.82·59-s − 1.02·61-s − 1/8·64-s − 0.229·76-s + 2.25·79-s + 16/9·81-s + 2.11·89-s − 0.796·101-s − 2.49·109-s − 0.928·116-s − 2·121-s − 1.79·124-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 5/12·144-s + 0.0819·149-s + ⋯ |
Λ(s)=(=(902500s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(902500s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
902500
= 22⋅54⋅192
|
Sign: |
1
|
Analytic conductor: |
57.5441 |
Root analytic conductor: |
2.75423 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 902500, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
2.607958809 |
L(21) |
≈ |
2.607958809 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C2 | 1+T2 |
| 5 | | 1 |
| 19 | C1 | (1−T)2 |
good | 3 | C22 | 1−5T2+p2T4 |
| 7 | C22 | 1−13T2+p2T4 |
| 11 | C2 | (1+pT2)2 |
| 13 | C22 | 1−17T2+p2T4 |
| 17 | C22 | 1+15T2+p2T4 |
| 23 | C22 | 1−21T2+p2T4 |
| 29 | C2 | (1−5T+pT2)2 |
| 31 | C2 | (1−10T+pT2)2 |
| 37 | C2 | (1−12T+pT2)(1+12T+pT2) |
| 41 | C2 | (1−2T+pT2)2 |
| 43 | C22 | 1−50T2+p2T4 |
| 47 | C2 | (1−pT2)2 |
| 53 | C22 | 1−25T2+p2T4 |
| 59 | C2 | (1−7T+pT2)2 |
| 61 | C2 | (1+4T+pT2)2 |
| 67 | C22 | 1−85T2+p2T4 |
| 71 | C2 | (1+pT2)2 |
| 73 | C22 | 1−65T2+p2T4 |
| 79 | C2 | (1−10T+pT2)2 |
| 83 | C22 | 1−162T2+p2T4 |
| 89 | C2 | (1−10T+pT2)2 |
| 97 | C2 | (1−8T+pT2)(1+8T+pT2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.18045213609076050203781860461, −9.887229082940113276627946832169, −9.521732143685579722395560465754, −9.040084914755131211440845574866, −8.570767921482245233489888072917, −8.146375880621783584188629201985, −7.73536537914502029469829826164, −7.42322210336377208774835263203, −6.69605789025234536577527003526, −6.48597861289769798939981143583, −6.16558918619354528010285186770, −5.23414264969154629438542205541, −4.93342210299783507043727648191, −4.53755516569122730922776405965, −4.00081605933044469909938997732, −3.68868125335052577976451741625, −2.58516429259994352815771479682, −2.54915768872178716372889155151, −1.07694327410406104773496674464, −1.06935986225685257853468118180,
1.06935986225685257853468118180, 1.07694327410406104773496674464, 2.54915768872178716372889155151, 2.58516429259994352815771479682, 3.68868125335052577976451741625, 4.00081605933044469909938997732, 4.53755516569122730922776405965, 4.93342210299783507043727648191, 5.23414264969154629438542205541, 6.16558918619354528010285186770, 6.48597861289769798939981143583, 6.69605789025234536577527003526, 7.42322210336377208774835263203, 7.73536537914502029469829826164, 8.146375880621783584188629201985, 8.570767921482245233489888072917, 9.040084914755131211440845574866, 9.521732143685579722395560465754, 9.887229082940113276627946832169, 10.18045213609076050203781860461