L(s) = 1 | − 2-s − 3-s + 6-s − 4·7-s + 8-s + 3·9-s − 6·11-s + 6·13-s + 4·14-s − 16-s + 2·17-s − 3·18-s + 7·19-s + 4·21-s + 6·22-s − 8·23-s − 24-s − 6·26-s − 8·27-s + 2·29-s − 16·31-s + 6·33-s − 2·34-s − 16·37-s − 7·38-s − 6·39-s − 5·41-s + ⋯ |
L(s) = 1 | − 0.707·2-s − 0.577·3-s + 0.408·6-s − 1.51·7-s + 0.353·8-s + 9-s − 1.80·11-s + 1.66·13-s + 1.06·14-s − 1/4·16-s + 0.485·17-s − 0.707·18-s + 1.60·19-s + 0.872·21-s + 1.27·22-s − 1.66·23-s − 0.204·24-s − 1.17·26-s − 1.53·27-s + 0.371·29-s − 2.87·31-s + 1.04·33-s − 0.342·34-s − 2.63·37-s − 1.13·38-s − 0.960·39-s − 0.780·41-s + ⋯ |
Λ(s)=(=(902500s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(902500s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
902500
= 22⋅54⋅192
|
Sign: |
1
|
Analytic conductor: |
57.5441 |
Root analytic conductor: |
2.75423 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 902500, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
0.1608622091 |
L(21) |
≈ |
0.1608622091 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C2 | 1+T+T2 |
| 5 | | 1 |
| 19 | C2 | 1−7T+pT2 |
good | 3 | C22 | 1+T−2T2+pT3+p2T4 |
| 7 | C2 | (1+2T+pT2)2 |
| 11 | C2 | (1+3T+pT2)2 |
| 13 | C22 | 1−6T+23T2−6pT3+p2T4 |
| 17 | C22 | 1−2T−13T2−2pT3+p2T4 |
| 23 | C22 | 1+8T+41T2+8pT3+p2T4 |
| 29 | C22 | 1−2T−25T2−2pT3+p2T4 |
| 31 | C2 | (1+8T+pT2)2 |
| 37 | C2 | (1+8T+pT2)2 |
| 41 | C22 | 1+5T−16T2+5pT3+p2T4 |
| 43 | C22 | 1−pT2+p2T4 |
| 47 | C22 | 1+6T−11T2+6pT3+p2T4 |
| 53 | C22 | 1−6T−17T2−6pT3+p2T4 |
| 59 | C22 | 1+5T−34T2+5pT3+p2T4 |
| 61 | C2 | (1+T+pT2)(1+13T+pT2) |
| 67 | C2 | (1−11T+pT2)(1+16T+pT2) |
| 71 | C22 | 1−6T−35T2−6pT3+p2T4 |
| 73 | C22 | 1+9T+8T2+9pT3+p2T4 |
| 79 | C22 | 1+8T−15T2+8pT3+p2T4 |
| 83 | C2 | (1−11T+pT2)2 |
| 89 | C22 | 1+14T+107T2+14pT3+p2T4 |
| 97 | C22 | 1+15T+128T2+15pT3+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.36859661640223438742265491932, −9.733230303290900359360727722307, −9.723062748053496413028711491741, −8.925555673642421527702407336663, −8.809603457363235577501433377780, −8.016702852100782720064155637798, −7.80166390321345304139152639750, −7.20960670757774901493112066904, −7.12708564082600825366052882373, −6.31965801127772253482119207790, −6.00537553320877504752555515351, −5.39971952835208150949969959237, −5.35379623129920964278335808955, −4.54638968321674808446313788390, −3.68746108087346518524154159102, −3.47455028564427821478408444633, −3.11755097200733550119288067858, −1.86194946388814138926680489730, −1.55806517875272411449924869470, −0.21899355817458887370701028620,
0.21899355817458887370701028620, 1.55806517875272411449924869470, 1.86194946388814138926680489730, 3.11755097200733550119288067858, 3.47455028564427821478408444633, 3.68746108087346518524154159102, 4.54638968321674808446313788390, 5.35379623129920964278335808955, 5.39971952835208150949969959237, 6.00537553320877504752555515351, 6.31965801127772253482119207790, 7.12708564082600825366052882373, 7.20960670757774901493112066904, 7.80166390321345304139152639750, 8.016702852100782720064155637798, 8.809603457363235577501433377780, 8.925555673642421527702407336663, 9.723062748053496413028711491741, 9.733230303290900359360727722307, 10.36859661640223438742265491932