L(s) = 1 | + 4·5-s − 20·7-s + 60·11-s − 26·13-s + 84·17-s − 60·19-s + 72·23-s − 210·25-s + 124·29-s − 108·31-s − 80·35-s + 36·37-s + 52·41-s − 32·43-s + 428·47-s − 134·49-s − 380·53-s + 240·55-s + 1.42e3·59-s + 1.01e3·61-s − 104·65-s − 844·67-s + 868·71-s − 60·73-s − 1.20e3·77-s + 272·79-s + 1.25e3·83-s + ⋯ |
L(s) = 1 | + 0.357·5-s − 1.07·7-s + 1.64·11-s − 0.554·13-s + 1.19·17-s − 0.724·19-s + 0.652·23-s − 1.67·25-s + 0.794·29-s − 0.625·31-s − 0.386·35-s + 0.159·37-s + 0.198·41-s − 0.113·43-s + 1.32·47-s − 0.390·49-s − 0.984·53-s + 0.588·55-s + 3.13·59-s + 2.12·61-s − 0.198·65-s − 1.53·67-s + 1.45·71-s − 0.0961·73-s − 1.77·77-s + 0.387·79-s + 1.65·83-s + ⋯ |
Λ(s)=(=(876096s/2ΓC(s)2L(s)Λ(4−s)
Λ(s)=(=(876096s/2ΓC(s+3/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
876096
= 26⋅34⋅132
|
Sign: |
1
|
Analytic conductor: |
3049.88 |
Root analytic conductor: |
7.43140 |
Motivic weight: |
3 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 876096, ( :3/2,3/2), 1)
|
Particular Values
L(2) |
≈ |
3.226719849 |
L(21) |
≈ |
3.226719849 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | | 1 |
| 13 | C1 | (1+pT)2 |
good | 5 | D4 | 1−4T+226T2−4p3T3+p6T4 |
| 7 | D4 | 1+20T+534T2+20p3T3+p6T4 |
| 11 | D4 | 1−60T+3114T2−60p3T3+p6T4 |
| 17 | D4 | 1−84T+10582T2−84p3T3+p6T4 |
| 19 | D4 | 1+60T+6526T2+60p3T3+p6T4 |
| 23 | D4 | 1−72T+14430T2−72p3T3+p6T4 |
| 29 | D4 | 1−124T−1586T2−124p3T3+p6T4 |
| 31 | D4 | 1+108T−16154T2+108p3T3+p6T4 |
| 37 | D4 | 1−36T+42382T2−36p3T3+p6T4 |
| 41 | D4 | 1−52T+76666T2−52p3T3+p6T4 |
| 43 | D4 | 1+32T+150198T2+32p3T3+p6T4 |
| 47 | D4 | 1−428T+116242T2−428p3T3+p6T4 |
| 53 | D4 | 1+380T+258142T2+380p3T3+p6T4 |
| 59 | D4 | 1−1420T+882490T2−1420p3T3+p6T4 |
| 61 | D4 | 1−1012T+708206T2−1012p3T3+p6T4 |
| 67 | D4 | 1+844T+778238T2+844p3T3+p6T4 |
| 71 | D4 | 1−868T+888050T2−868p3T3+p6T4 |
| 73 | D4 | 1+60T+114886T2+60p3T3+p6T4 |
| 79 | D4 | 1−272T+993374T2−272p3T3+p6T4 |
| 83 | D4 | 1−1252T+1118698T2−1252p3T3+p6T4 |
| 89 | D4 | 1+572T+853306T2+572p3T3+p6T4 |
| 97 | D4 | 1−708T+1762390T2−708p3T3+p6T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.682769275316558451439543479409, −9.665501630742496776000765918800, −8.989548486388880517970525139888, −8.945050999339779608466859535843, −8.026538617283859789435278816216, −7.986602093722320726290349830754, −7.11642283516373095862941225541, −6.93627993051916138822679883669, −6.42675915290428761164413041458, −6.15425401009738511870859127689, −5.43878472926334727798313626109, −5.37583526258642100078448071333, −4.31517351953994171765573131581, −4.15661282717541198967742916102, −3.35076686402295415440951550779, −3.30871327573630775011803171414, −2.23935713191443860958381587503, −1.96978322746292201857488326676, −0.980845958631757754395181003044, −0.55044611406476825340072769790,
0.55044611406476825340072769790, 0.980845958631757754395181003044, 1.96978322746292201857488326676, 2.23935713191443860958381587503, 3.30871327573630775011803171414, 3.35076686402295415440951550779, 4.15661282717541198967742916102, 4.31517351953994171765573131581, 5.37583526258642100078448071333, 5.43878472926334727798313626109, 6.15425401009738511870859127689, 6.42675915290428761164413041458, 6.93627993051916138822679883669, 7.11642283516373095862941225541, 7.986602093722320726290349830754, 8.026538617283859789435278816216, 8.945050999339779608466859535843, 8.989548486388880517970525139888, 9.665501630742496776000765918800, 9.682769275316558451439543479409