L(s) = 1 | + 2·5-s + 5·7-s − 11-s − 2·13-s − 17-s + 2·19-s − 9·23-s + 3·25-s − 6·29-s − 12·31-s + 10·35-s − 9·37-s + 3·41-s + 2·43-s − 14·47-s + 9·49-s + 3·53-s − 2·55-s − 24·59-s − 61-s − 4·65-s − 2·67-s − 25·71-s − 12·73-s − 5·77-s + 3·79-s − 2·85-s + ⋯ |
L(s) = 1 | + 0.894·5-s + 1.88·7-s − 0.301·11-s − 0.554·13-s − 0.242·17-s + 0.458·19-s − 1.87·23-s + 3/5·25-s − 1.11·29-s − 2.15·31-s + 1.69·35-s − 1.47·37-s + 0.468·41-s + 0.304·43-s − 2.04·47-s + 9/7·49-s + 0.412·53-s − 0.269·55-s − 3.12·59-s − 0.128·61-s − 0.496·65-s − 0.244·67-s − 2.96·71-s − 1.40·73-s − 0.569·77-s + 0.337·79-s − 0.216·85-s + ⋯ |
Λ(s)=(=(87609600s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(87609600s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
87609600
= 28⋅34⋅52⋅132
|
Sign: |
1
|
Analytic conductor: |
5586.06 |
Root analytic conductor: |
8.64522 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
2
|
Selberg data: |
(4, 87609600, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | | 1 |
| 5 | C1 | (1−T)2 |
| 13 | C1 | (1+T)2 |
good | 7 | D4 | 1−5T+16T2−5pT3+p2T4 |
| 11 | D4 | 1+T+18T2+pT3+p2T4 |
| 17 | D4 | 1+T+30T2+pT3+p2T4 |
| 19 | D4 | 1−2T+22T2−2pT3+p2T4 |
| 23 | D4 | 1+9T+62T2+9pT3+p2T4 |
| 29 | D4 | 1+6T+50T2+6pT3+p2T4 |
| 31 | C2 | (1+6T+pT2)2 |
| 37 | D4 | 1+9T+56T2+9pT3+p2T4 |
| 41 | D4 | 1−3T+80T2−3pT3+p2T4 |
| 43 | D4 | 1−2T+70T2−2pT3+p2T4 |
| 47 | D4 | 1+14T+126T2+14pT3+p2T4 |
| 53 | D4 | 1−3T+70T2−3pT3+p2T4 |
| 59 | C2 | (1+12T+pT2)2 |
| 61 | D4 | 1+T+84T2+pT3+p2T4 |
| 67 | D4 | 1+2T−18T2+2pT3+p2T4 |
| 71 | D4 | 1+25T+294T2+25pT3+p2T4 |
| 73 | C2 | (1+6T+pT2)2 |
| 79 | D4 | 1−3T+122T2−3pT3+p2T4 |
| 83 | C22 | 1−106T2+p2T4 |
| 89 | D4 | 1−9T+160T2−9pT3+p2T4 |
| 97 | D4 | 1−5T−8T2−5pT3+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.63745624210096357171202597080, −7.53118532001094719175023556090, −6.70668270789967633890177593551, −6.63264688609698015462378773702, −6.00866554670626865042079744714, −5.79986410952386088974612850144, −5.37785113468469007359117471042, −5.25177300777133945870242579394, −4.77639799981178319614907430538, −4.49960807842746904731067276608, −4.16076445854621581259954130651, −3.61881409878745915715574603080, −3.22703814353017751886902231326, −2.79710430694435538976692478721, −2.07720068936321360482182710078, −1.97255672866968911267077175713, −1.48507205216074216520246176703, −1.43757561007400231991021636840, 0, 0,
1.43757561007400231991021636840, 1.48507205216074216520246176703, 1.97255672866968911267077175713, 2.07720068936321360482182710078, 2.79710430694435538976692478721, 3.22703814353017751886902231326, 3.61881409878745915715574603080, 4.16076445854621581259954130651, 4.49960807842746904731067276608, 4.77639799981178319614907430538, 5.25177300777133945870242579394, 5.37785113468469007359117471042, 5.79986410952386088974612850144, 6.00866554670626865042079744714, 6.63264688609698015462378773702, 6.70668270789967633890177593551, 7.53118532001094719175023556090, 7.63745624210096357171202597080