L(s) = 1 | − 2-s − 6·3-s + 2·4-s − 3·5-s + 6·6-s − 5·7-s − 5·8-s + 21·9-s + 3·10-s − 6·11-s − 12·12-s − 2·13-s + 5·14-s + 18·15-s + 5·16-s + 2·17-s − 21·18-s − 2·19-s − 6·20-s + 30·21-s + 6·22-s + 30·24-s + 5·25-s + 2·26-s − 54·27-s − 10·28-s − 7·29-s + ⋯ |
L(s) = 1 | − 0.707·2-s − 3.46·3-s + 4-s − 1.34·5-s + 2.44·6-s − 1.88·7-s − 1.76·8-s + 7·9-s + 0.948·10-s − 1.80·11-s − 3.46·12-s − 0.554·13-s + 1.33·14-s + 4.64·15-s + 5/4·16-s + 0.485·17-s − 4.94·18-s − 0.458·19-s − 1.34·20-s + 6.54·21-s + 1.27·22-s + 6.12·24-s + 25-s + 0.392·26-s − 10.3·27-s − 1.88·28-s − 1.29·29-s + ⋯ |
Λ(s)=(=(8281s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(8281s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
8281
= 72⋅132
|
Sign: |
1
|
Analytic conductor: |
0.528003 |
Root analytic conductor: |
0.852431 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
2
|
Selberg data: |
(4, 8281, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 7 | C2 | 1+5T+pT2 |
| 13 | C2 | 1+2T+pT2 |
good | 2 | C22 | 1+T−T2+pT3+p2T4 |
| 3 | C2 | (1+pT+pT2)2 |
| 5 | C22 | 1+3T+4T2+3pT3+p2T4 |
| 11 | C2 | (1+3T+pT2)2 |
| 17 | C22 | 1−2T−13T2−2pT3+p2T4 |
| 19 | C2 | (1+T+pT2)2 |
| 23 | C22 | 1−pT2+p2T4 |
| 29 | C22 | 1+7T+20T2+7pT3+p2T4 |
| 31 | C22 | 1+3T−22T2+3pT3+p2T4 |
| 37 | C22 | 1+2T−33T2+2pT3+p2T4 |
| 41 | C22 | 1+3T−32T2+3pT3+p2T4 |
| 43 | C22 | 1−7T+6T2−7pT3+p2T4 |
| 47 | C22 | 1+T−46T2+pT3+p2T4 |
| 53 | C22 | 1+3T−44T2+3pT3+p2T4 |
| 59 | C22 | 1−4T−43T2−4pT3+p2T4 |
| 61 | C2 | (1+13T+pT2)2 |
| 67 | C2 | (1+3T+pT2)2 |
| 71 | C22 | 1+13T+98T2+13pT3+p2T4 |
| 73 | C22 | 1−13T+96T2−13pT3+p2T4 |
| 79 | C22 | 1−3T−70T2−3pT3+p2T4 |
| 83 | C2 | (1+pT2)2 |
| 89 | C22 | 1+6T−53T2+6pT3+p2T4 |
| 97 | C2 | (1−19T+pT2)(1+14T+pT2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.17083072304890003935458042810, −12.87148941030843382217326914293, −12.35600926309536103741998797111, −12.08027994337324273952628204747, −11.82021533416337375398473062326, −11.03561694622216597655332642963, −10.61928492568430797996677418294, −10.54540591994848998103598344623, −9.710119850407055439006879556857, −9.180931829567947556896723749772, −7.74588984405759713913977021044, −7.37774941531169181062342851270, −6.70721235102570303894165474320, −6.33600266034391586792357201625, −5.59003972084021475716683567771, −5.38223469062928345016302182981, −4.19143906619076892162692347148, −3.04189453050271718744975784464, 0, 0,
3.04189453050271718744975784464, 4.19143906619076892162692347148, 5.38223469062928345016302182981, 5.59003972084021475716683567771, 6.33600266034391586792357201625, 6.70721235102570303894165474320, 7.37774941531169181062342851270, 7.74588984405759713913977021044, 9.180931829567947556896723749772, 9.710119850407055439006879556857, 10.54540591994848998103598344623, 10.61928492568430797996677418294, 11.03561694622216597655332642963, 11.82021533416337375398473062326, 12.08027994337324273952628204747, 12.35600926309536103741998797111, 12.87148941030843382217326914293, 13.17083072304890003935458042810