L(s) = 1 | − 2-s − 6·3-s + 2·4-s − 3·5-s + 6·6-s − 5·7-s − 5·8-s + 21·9-s + 3·10-s − 6·11-s − 12·12-s − 2·13-s + 5·14-s + 18·15-s + 5·16-s + 2·17-s − 21·18-s − 2·19-s − 6·20-s + 30·21-s + 6·22-s + 30·24-s + 5·25-s + 2·26-s − 54·27-s − 10·28-s − 7·29-s + ⋯ |
L(s) = 1 | − 0.707·2-s − 3.46·3-s + 4-s − 1.34·5-s + 2.44·6-s − 1.88·7-s − 1.76·8-s + 7·9-s + 0.948·10-s − 1.80·11-s − 3.46·12-s − 0.554·13-s + 1.33·14-s + 4.64·15-s + 5/4·16-s + 0.485·17-s − 4.94·18-s − 0.458·19-s − 1.34·20-s + 6.54·21-s + 1.27·22-s + 6.12·24-s + 25-s + 0.392·26-s − 10.3·27-s − 1.88·28-s − 1.29·29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 8281 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8281 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $\Gal(F_p)$ | $F_p(T)$ |
---|
bad | 7 | $C_2$ | \( 1 + 5 T + p T^{2} \) |
| 13 | $C_2$ | \( 1 + 2 T + p T^{2} \) |
good | 2 | $C_2^2$ | \( 1 + T - T^{2} + p T^{3} + p^{2} T^{4} \) |
| 3 | $C_2$ | \( ( 1 + p T + p T^{2} )^{2} \) |
| 5 | $C_2^2$ | \( 1 + 3 T + 4 T^{2} + 3 p T^{3} + p^{2} T^{4} \) |
| 11 | $C_2$ | \( ( 1 + 3 T + p T^{2} )^{2} \) |
| 17 | $C_2^2$ | \( 1 - 2 T - 13 T^{2} - 2 p T^{3} + p^{2} T^{4} \) |
| 19 | $C_2$ | \( ( 1 + T + p T^{2} )^{2} \) |
| 23 | $C_2^2$ | \( 1 - p T^{2} + p^{2} T^{4} \) |
| 29 | $C_2^2$ | \( 1 + 7 T + 20 T^{2} + 7 p T^{3} + p^{2} T^{4} \) |
| 31 | $C_2^2$ | \( 1 + 3 T - 22 T^{2} + 3 p T^{3} + p^{2} T^{4} \) |
| 37 | $C_2^2$ | \( 1 + 2 T - 33 T^{2} + 2 p T^{3} + p^{2} T^{4} \) |
| 41 | $C_2^2$ | \( 1 + 3 T - 32 T^{2} + 3 p T^{3} + p^{2} T^{4} \) |
| 43 | $C_2^2$ | \( 1 - 7 T + 6 T^{2} - 7 p T^{3} + p^{2} T^{4} \) |
| 47 | $C_2^2$ | \( 1 + T - 46 T^{2} + p T^{3} + p^{2} T^{4} \) |
| 53 | $C_2^2$ | \( 1 + 3 T - 44 T^{2} + 3 p T^{3} + p^{2} T^{4} \) |
| 59 | $C_2^2$ | \( 1 - 4 T - 43 T^{2} - 4 p T^{3} + p^{2} T^{4} \) |
| 61 | $C_2$ | \( ( 1 + 13 T + p T^{2} )^{2} \) |
| 67 | $C_2$ | \( ( 1 + 3 T + p T^{2} )^{2} \) |
| 71 | $C_2^2$ | \( 1 + 13 T + 98 T^{2} + 13 p T^{3} + p^{2} T^{4} \) |
| 73 | $C_2^2$ | \( 1 - 13 T + 96 T^{2} - 13 p T^{3} + p^{2} T^{4} \) |
| 79 | $C_2^2$ | \( 1 - 3 T - 70 T^{2} - 3 p T^{3} + p^{2} T^{4} \) |
| 83 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 89 | $C_2^2$ | \( 1 + 6 T - 53 T^{2} + 6 p T^{3} + p^{2} T^{4} \) |
| 97 | $C_2$ | \( ( 1 - 19 T + p T^{2} )( 1 + 14 T + p T^{2} ) \) |
show more | | |
show less | | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.17083072304890003935458042810, −12.87148941030843382217326914293, −12.35600926309536103741998797111, −12.08027994337324273952628204747, −11.82021533416337375398473062326, −11.03561694622216597655332642963, −10.61928492568430797996677418294, −10.54540591994848998103598344623, −9.710119850407055439006879556857, −9.180931829567947556896723749772, −7.74588984405759713913977021044, −7.37774941531169181062342851270, −6.70721235102570303894165474320, −6.33600266034391586792357201625, −5.59003972084021475716683567771, −5.38223469062928345016302182981, −4.19143906619076892162692347148, −3.04189453050271718744975784464, 0, 0,
3.04189453050271718744975784464, 4.19143906619076892162692347148, 5.38223469062928345016302182981, 5.59003972084021475716683567771, 6.33600266034391586792357201625, 6.70721235102570303894165474320, 7.37774941531169181062342851270, 7.74588984405759713913977021044, 9.180931829567947556896723749772, 9.710119850407055439006879556857, 10.54540591994848998103598344623, 10.61928492568430797996677418294, 11.03561694622216597655332642963, 11.82021533416337375398473062326, 12.08027994337324273952628204747, 12.35600926309536103741998797111, 12.87148941030843382217326914293, 13.17083072304890003935458042810