L(s) = 1 | − 2·2-s + 2·3-s + 3·4-s + 4·5-s − 4·6-s − 4·8-s + 2·9-s − 8·10-s + 4·11-s + 6·12-s − 6·13-s + 8·15-s + 5·16-s + 8·17-s − 4·18-s + 6·19-s + 12·20-s − 8·22-s − 2·23-s − 8·24-s + 11·25-s + 12·26-s + 6·27-s − 16·30-s + 8·31-s − 6·32-s + 8·33-s + ⋯ |
L(s) = 1 | − 1.41·2-s + 1.15·3-s + 3/2·4-s + 1.78·5-s − 1.63·6-s − 1.41·8-s + 2/3·9-s − 2.52·10-s + 1.20·11-s + 1.73·12-s − 1.66·13-s + 2.06·15-s + 5/4·16-s + 1.94·17-s − 0.942·18-s + 1.37·19-s + 2.68·20-s − 1.70·22-s − 0.417·23-s − 1.63·24-s + 11/5·25-s + 2.35·26-s + 1.15·27-s − 2.92·30-s + 1.43·31-s − 1.06·32-s + 1.39·33-s + ⋯ |
Λ(s)=(=(828100s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(828100s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
828100
= 22⋅52⋅72⋅132
|
Sign: |
1
|
Analytic conductor: |
52.8003 |
Root analytic conductor: |
2.69562 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 828100, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
2.896107029 |
L(21) |
≈ |
2.896107029 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C1 | (1+T)2 |
| 5 | C2 | 1−4T+pT2 |
| 7 | C2 | 1+T2 |
| 13 | C2 | 1+6T+pT2 |
good | 3 | C22 | 1−2T+2T2−2pT3+p2T4 |
| 11 | C22 | 1−4T+8T2−4pT3+p2T4 |
| 17 | C22 | 1−8T+32T2−8pT3+p2T4 |
| 19 | C22 | 1−6T+18T2−6pT3+p2T4 |
| 23 | C22 | 1+2T+2T2+2pT3+p2T4 |
| 29 | C22 | 1−54T2+p2T4 |
| 31 | C22 | 1−8T+32T2−8pT3+p2T4 |
| 37 | C2 | (1−12T+pT2)(1+12T+pT2) |
| 41 | C22 | 1−4T+8T2−4pT3+p2T4 |
| 43 | C22 | 1+8T+32T2+8pT3+p2T4 |
| 47 | C22 | 1−30T2+p2T4 |
| 53 | C22 | 1−8T+32T2−8pT3+p2T4 |
| 59 | C22 | 1−6T+18T2−6pT3+p2T4 |
| 61 | C2 | (1+10T+pT2)2 |
| 67 | C2 | (1+pT2)2 |
| 71 | C22 | 1+14T+98T2+14pT3+p2T4 |
| 73 | C2 | (1−6T+pT2)2 |
| 79 | C22 | 1−94T2+p2T4 |
| 83 | C22 | 1−130T2+p2T4 |
| 89 | C22 | 1−20T+200T2−20pT3+p2T4 |
| 97 | C2 | (1+2T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.909019313289954528911472144695, −9.863799273715597252472957019026, −9.438155601454903147557820918142, −9.258725652792588385750377375437, −8.785464947559925019730791366086, −8.290260678100921602776673099097, −7.896124883047979078406510087824, −7.44142111514652985071167618170, −7.08275830103697089805721086852, −6.65620813428663314754936913889, −5.92669686253139785541748268046, −5.91966122199761279484072653741, −4.91436355291107972404741626140, −4.84733197437917578494953704639, −3.57838092787783101088530829958, −3.21436558443299442175368177187, −2.53101598790025368461818334848, −2.34352637770315376767693448059, −1.27832549824080320124244507217, −1.21245014815265443091380975368,
1.21245014815265443091380975368, 1.27832549824080320124244507217, 2.34352637770315376767693448059, 2.53101598790025368461818334848, 3.21436558443299442175368177187, 3.57838092787783101088530829958, 4.84733197437917578494953704639, 4.91436355291107972404741626140, 5.91966122199761279484072653741, 5.92669686253139785541748268046, 6.65620813428663314754936913889, 7.08275830103697089805721086852, 7.44142111514652985071167618170, 7.896124883047979078406510087824, 8.290260678100921602776673099097, 8.785464947559925019730791366086, 9.258725652792588385750377375437, 9.438155601454903147557820918142, 9.863799273715597252472957019026, 9.909019313289954528911472144695