Properties

Label 4-910e2-1.1-c1e2-0-29
Degree $4$
Conductor $828100$
Sign $1$
Analytic cond. $52.8003$
Root an. cond. $2.69562$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 4-s + 2·5-s − 7-s − 3·8-s + 5·9-s + 2·10-s − 14-s − 16-s + 5·18-s − 2·20-s − 25-s + 28-s + 5·29-s + 5·32-s − 2·35-s − 5·36-s − 6·40-s + 10·45-s + 10·47-s − 6·49-s − 50-s + 3·56-s + 5·58-s + 5·61-s − 5·63-s + 7·64-s + ⋯
L(s)  = 1  + 0.707·2-s − 1/2·4-s + 0.894·5-s − 0.377·7-s − 1.06·8-s + 5/3·9-s + 0.632·10-s − 0.267·14-s − 1/4·16-s + 1.17·18-s − 0.447·20-s − 1/5·25-s + 0.188·28-s + 0.928·29-s + 0.883·32-s − 0.338·35-s − 5/6·36-s − 0.948·40-s + 1.49·45-s + 1.45·47-s − 6/7·49-s − 0.141·50-s + 0.400·56-s + 0.656·58-s + 0.640·61-s − 0.629·63-s + 7/8·64-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 828100 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 828100 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(828100\)    =    \(2^{2} \cdot 5^{2} \cdot 7^{2} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(52.8003\)
Root analytic conductor: \(2.69562\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 828100,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.074138666\)
\(L(\frac12)\) \(\approx\) \(3.074138666\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 - T + p T^{2} \)
5$C_2$ \( 1 - 2 T + p T^{2} \)
7$C_2$ \( 1 + T + p T^{2} \)
13$C_2$ \( 1 + p T^{2} \)
good3$C_2^2$ \( 1 - 5 T^{2} + p^{2} T^{4} \)
11$C_2^2$ \( 1 - T^{2} + p^{2} T^{4} \)
17$C_2^2$ \( 1 - 9 T^{2} + p^{2} T^{4} \)
19$C_2^2$ \( 1 - 35 T^{2} + p^{2} T^{4} \)
23$C_2^2$ \( 1 + 29 T^{2} + p^{2} T^{4} \)
29$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
31$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
37$C_2$ \( ( 1 + p T^{2} )^{2} \)
41$C_2^2$ \( 1 - 53 T^{2} + p^{2} T^{4} \)
43$C_2^2$ \( 1 + 13 T^{2} + p^{2} T^{4} \)
47$C_2$$\times$$C_2$ \( ( 1 - 13 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
53$C_2^2$ \( 1 - 39 T^{2} + p^{2} T^{4} \)
59$C_2^2$ \( 1 + 53 T^{2} + p^{2} T^{4} \)
61$C_2$$\times$$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 - 2 T + p T^{2} ) \)
67$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
71$C_2^2$ \( 1 + 15 T^{2} + p^{2} T^{4} \)
73$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
79$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
83$C_2$$\times$$C_2$ \( ( 1 + 9 T + p T^{2} )( 1 + 11 T + p T^{2} ) \)
89$C_2^2$ \( 1 + 75 T^{2} + p^{2} T^{4} \)
97$C_2$$\times$$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 - 8 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.278877274892695287727795374037, −7.67079707009814488610000195947, −7.29485144321340666053514802234, −6.68430673500856150434857031881, −6.43964864815821305389806804844, −5.95604872381600692570630303817, −5.40825241828452335274084146043, −5.07343634313703593101845722614, −4.38561837143467013791385821649, −4.20700872251592628318421041853, −3.59483748815996456256666405091, −2.99169022499410819952197063053, −2.32440195501426568619157398366, −1.63852829411733375635312587819, −0.790582477150764616582705568130, 0.790582477150764616582705568130, 1.63852829411733375635312587819, 2.32440195501426568619157398366, 2.99169022499410819952197063053, 3.59483748815996456256666405091, 4.20700872251592628318421041853, 4.38561837143467013791385821649, 5.07343634313703593101845722614, 5.40825241828452335274084146043, 5.95604872381600692570630303817, 6.43964864815821305389806804844, 6.68430673500856150434857031881, 7.29485144321340666053514802234, 7.67079707009814488610000195947, 8.278877274892695287727795374037

Graph of the $Z$-function along the critical line