Properties

Label 4-910e2-1.1-c1e2-0-28
Degree $4$
Conductor $828100$
Sign $1$
Analytic cond. $52.8003$
Root an. cond. $2.69562$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4-s + 3·5-s − 3·7-s + 5·9-s − 6·13-s + 16-s + 3·20-s + 4·25-s − 3·28-s − 9·35-s + 5·36-s + 15·45-s + 6·47-s + 2·49-s − 6·52-s − 15·63-s + 64-s − 18·65-s − 12·73-s + 20·79-s + 3·80-s + 16·81-s + 12·83-s + 18·91-s + 24·97-s + 4·100-s − 3·112-s + ⋯
L(s)  = 1  + 1/2·4-s + 1.34·5-s − 1.13·7-s + 5/3·9-s − 1.66·13-s + 1/4·16-s + 0.670·20-s + 4/5·25-s − 0.566·28-s − 1.52·35-s + 5/6·36-s + 2.23·45-s + 0.875·47-s + 2/7·49-s − 0.832·52-s − 1.88·63-s + 1/8·64-s − 2.23·65-s − 1.40·73-s + 2.25·79-s + 0.335·80-s + 16/9·81-s + 1.31·83-s + 1.88·91-s + 2.43·97-s + 2/5·100-s − 0.283·112-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 828100 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 828100 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(828100\)    =    \(2^{2} \cdot 5^{2} \cdot 7^{2} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(52.8003\)
Root analytic conductor: \(2.69562\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 828100,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.776640194\)
\(L(\frac12)\) \(\approx\) \(2.776640194\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
5$C_2$ \( 1 - 3 T + p T^{2} \)
7$C_2$ \( 1 + 3 T + p T^{2} \)
13$C_2$ \( 1 + 6 T + p T^{2} \)
good3$C_2^2$ \( 1 - 5 T^{2} + p^{2} T^{4} \)
11$C_2$ \( ( 1 - p T^{2} )^{2} \)
17$C_2^2$ \( 1 - 25 T^{2} + p^{2} T^{4} \)
19$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
23$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
29$C_2$ \( ( 1 + p T^{2} )^{2} \)
31$C_2$ \( ( 1 + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
41$C_2$ \( ( 1 + p T^{2} )^{2} \)
43$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
47$C_2$ \( ( 1 - 3 T + p T^{2} )^{2} \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
59$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
61$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
67$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
71$C_2^2$ \( 1 + 83 T^{2} + p^{2} T^{4} \)
73$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
83$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
89$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
97$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.044232823266163812238795677911, −7.63482311406937681581586681382, −7.20670188067571374907984565476, −6.91567390174432327305544647075, −6.45871850949150718960282886455, −6.11468033463217861943153087036, −5.60007585681753022917158026351, −4.99805789276138837694498055970, −4.66504850751378008069282846265, −4.01102893203527148482379160677, −3.36933291908444446853727413458, −2.78542304823223274645134215750, −2.12357001650370786792821988508, −1.84305665235828701509630587478, −0.78779813422034744796473924681, 0.78779813422034744796473924681, 1.84305665235828701509630587478, 2.12357001650370786792821988508, 2.78542304823223274645134215750, 3.36933291908444446853727413458, 4.01102893203527148482379160677, 4.66504850751378008069282846265, 4.99805789276138837694498055970, 5.60007585681753022917158026351, 6.11468033463217861943153087036, 6.45871850949150718960282886455, 6.91567390174432327305544647075, 7.20670188067571374907984565476, 7.63482311406937681581586681382, 8.044232823266163812238795677911

Graph of the $Z$-function along the critical line