L(s) = 1 | − 2·2-s + 3·4-s − 5-s − 7-s − 4·8-s + 3·9-s + 2·10-s − 11-s − 5·13-s + 2·14-s + 5·16-s − 8·17-s − 6·18-s − 8·19-s − 3·20-s + 2·22-s + 10·23-s + 10·26-s − 3·28-s + 2·29-s − 10·31-s − 6·32-s + 16·34-s + 35-s + 9·36-s − 4·37-s + 16·38-s + ⋯ |
L(s) = 1 | − 1.41·2-s + 3/2·4-s − 0.447·5-s − 0.377·7-s − 1.41·8-s + 9-s + 0.632·10-s − 0.301·11-s − 1.38·13-s + 0.534·14-s + 5/4·16-s − 1.94·17-s − 1.41·18-s − 1.83·19-s − 0.670·20-s + 0.426·22-s + 2.08·23-s + 1.96·26-s − 0.566·28-s + 0.371·29-s − 1.79·31-s − 1.06·32-s + 2.74·34-s + 0.169·35-s + 3/2·36-s − 0.657·37-s + 2.59·38-s + ⋯ |
Λ(s)=(=(828100s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(828100s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
828100
= 22⋅52⋅72⋅132
|
Sign: |
1
|
Analytic conductor: |
52.8003 |
Root analytic conductor: |
2.69562 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 828100, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
0.1726577376 |
L(21) |
≈ |
0.1726577376 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C1 | (1+T)2 |
| 5 | C2 | 1+T+T2 |
| 7 | C2 | 1+T+pT2 |
| 13 | C2 | 1+5T+pT2 |
good | 3 | C2 | (1−pT+pT2)(1+pT+pT2) |
| 11 | C22 | 1+T−10T2+pT3+p2T4 |
| 17 | C2 | (1+4T+pT2)2 |
| 19 | C2 | (1+T+pT2)(1+7T+pT2) |
| 23 | C2 | (1−5T+pT2)2 |
| 29 | C22 | 1−2T−25T2−2pT3+p2T4 |
| 31 | C22 | 1+10T+69T2+10pT3+p2T4 |
| 37 | C2 | (1+2T+pT2)2 |
| 41 | C22 | 1+3T−32T2+3pT3+p2T4 |
| 43 | C22 | 1+6T−7T2+6pT3+p2T4 |
| 47 | C22 | 1+8T+17T2+8pT3+p2T4 |
| 53 | C22 | 1+5T−28T2+5pT3+p2T4 |
| 59 | C2 | (1−12T+pT2)2 |
| 61 | C22 | 1−8T+3T2−8pT3+p2T4 |
| 67 | C22 | 1+2T−63T2+2pT3+p2T4 |
| 71 | C22 | 1+12T+73T2+12pT3+p2T4 |
| 73 | C22 | 1+16T+183T2+16pT3+p2T4 |
| 79 | C22 | 1−2T−75T2−2pT3+p2T4 |
| 83 | C2 | (1−16T+pT2)2 |
| 89 | C2 | (1+7T+pT2)2 |
| 97 | C22 | 1+8T−33T2+8pT3+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.52796594695979878199182042631, −9.795950206284353913610816065733, −9.459468581265115748865655139313, −8.991866193509581368405682127914, −8.795935821127456575658625617291, −8.134446316029763702820524619344, −8.043989383862278072754168478459, −7.11109157167891147442845683911, −7.05627752997572032139066521326, −6.61300089150476102490955354780, −6.60123053386520552157316841037, −5.32919773760748920058169549670, −5.22845520551690744136524376096, −4.37300743878545598567081083930, −4.14111075344903286009663480685, −3.24893740290304536718548029527, −2.67788104112472863392467872818, −2.07001723757237341404615016693, −1.57504599189052410109176622911, −0.23932874241198483053841117808,
0.23932874241198483053841117808, 1.57504599189052410109176622911, 2.07001723757237341404615016693, 2.67788104112472863392467872818, 3.24893740290304536718548029527, 4.14111075344903286009663480685, 4.37300743878545598567081083930, 5.22845520551690744136524376096, 5.32919773760748920058169549670, 6.60123053386520552157316841037, 6.61300089150476102490955354780, 7.05627752997572032139066521326, 7.11109157167891147442845683911, 8.043989383862278072754168478459, 8.134446316029763702820524619344, 8.795935821127456575658625617291, 8.991866193509581368405682127914, 9.459468581265115748865655139313, 9.795950206284353913610816065733, 10.52796594695979878199182042631