| L(s) = 1 | + 1.02e3·2-s + 7.86e5·4-s − 3.90e6·5-s + 2.20e7·7-s + 5.36e8·8-s − 4.00e9·10-s − 1.79e9·11-s − 3.19e10·13-s + 2.25e10·14-s + 3.43e11·16-s + 7.83e11·17-s − 1.19e12·19-s − 3.07e12·20-s − 1.83e12·22-s − 6.87e12·23-s + 1.14e13·25-s − 3.27e13·26-s + 1.73e13·28-s − 1.07e14·29-s + 2.22e14·31-s + 2.11e14·32-s + 8.02e14·34-s − 8.60e13·35-s + 1.10e15·37-s − 1.22e15·38-s − 2.09e15·40-s − 8.34e14·41-s + ⋯ |
| L(s) = 1 | + 1.41·2-s + 3/2·4-s − 0.894·5-s + 0.206·7-s + 1.41·8-s − 1.26·10-s − 0.229·11-s − 0.835·13-s + 0.291·14-s + 5/4·16-s + 1.60·17-s − 0.851·19-s − 1.34·20-s − 0.324·22-s − 0.795·23-s + 3/5·25-s − 1.18·26-s + 0.309·28-s − 1.37·29-s + 1.51·31-s + 1.06·32-s + 2.26·34-s − 0.184·35-s + 1.39·37-s − 1.20·38-s − 1.26·40-s − 0.398·41-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 8100 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(20-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8100 ^{s/2} \, \Gamma_{\C}(s+19/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(10)\) |
\(\approx\) |
\(6.590012147\) |
| \(L(\frac12)\) |
\(\approx\) |
\(6.590012147\) |
| \(L(\frac{21}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.01714113964780393724388056506, −10.52845482881095466239955970851, −9.854563612788266585004543985476, −9.551309435281897043717324389469, −8.279608602709556927432904231336, −8.218965799304651294066463136980, −7.37469491105062508426885457115, −7.35403883810434587449349785849, −6.23776227453332074835610867470, −6.15593939468020146830522777750, −5.23588786365601467331786256544, −4.96272778978856319177767288111, −4.25449777384091724290134197003, −4.00310037866641388322089033738, −3.11684711162268566932872611931, −3.06582069291253520042918605342, −2.12627745981484019061834171767, −1.77758019260246656031124817610, −0.895839559009905349628516945238, −0.39868515562687079964634275102,
0.39868515562687079964634275102, 0.895839559009905349628516945238, 1.77758019260246656031124817610, 2.12627745981484019061834171767, 3.06582069291253520042918605342, 3.11684711162268566932872611931, 4.00310037866641388322089033738, 4.25449777384091724290134197003, 4.96272778978856319177767288111, 5.23588786365601467331786256544, 6.15593939468020146830522777750, 6.23776227453332074835610867470, 7.35403883810434587449349785849, 7.37469491105062508426885457115, 8.218965799304651294066463136980, 8.279608602709556927432904231336, 9.551309435281897043717324389469, 9.854563612788266585004543985476, 10.52845482881095466239955970851, 11.01714113964780393724388056506