Properties

Label 4-896e2-1.1-c1e2-0-48
Degree $4$
Conductor $802816$
Sign $1$
Analytic cond. $51.1882$
Root an. cond. $2.67480$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 6·9-s − 4·11-s − 4·17-s − 8·19-s − 10·25-s − 4·41-s − 20·43-s + 49-s + 16·59-s − 4·67-s − 28·73-s + 27·81-s − 24·83-s − 12·89-s + 12·97-s + 24·99-s + 4·107-s + 12·113-s − 10·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 24·153-s + 157-s + ⋯
L(s)  = 1  − 2·9-s − 1.20·11-s − 0.970·17-s − 1.83·19-s − 2·25-s − 0.624·41-s − 3.04·43-s + 1/7·49-s + 2.08·59-s − 0.488·67-s − 3.27·73-s + 3·81-s − 2.63·83-s − 1.27·89-s + 1.21·97-s + 2.41·99-s + 0.386·107-s + 1.12·113-s − 0.909·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 1.94·153-s + 0.0798·157-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 802816 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 802816 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(802816\)    =    \(2^{14} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(51.1882\)
Root analytic conductor: \(2.67480\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 802816,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
7$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
good3$C_2$ \( ( 1 + p T^{2} )^{2} \)
5$C_2$ \( ( 1 + p T^{2} )^{2} \)
11$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
13$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
17$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
19$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
23$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
31$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
37$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
41$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 + p T^{2} )^{2} \)
53$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
59$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
67$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 + p T^{2} )^{2} \)
73$C_2$ \( ( 1 + 14 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
83$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
89$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.087378566177631524568448356067, −7.21548466569915381287345844202, −7.05423431157513252126838443665, −6.17001541074125413712117936973, −6.12989355366287113998052346794, −5.48795844593139733630773568879, −5.24609411434638646076354631207, −4.43911701244612211404212251634, −4.18059558869762023064487041504, −3.20638701156747793728620811665, −3.03242174368467990510864340896, −2.08487933693321038857594349293, −2.01559525087714507744750710482, 0, 0, 2.01559525087714507744750710482, 2.08487933693321038857594349293, 3.03242174368467990510864340896, 3.20638701156747793728620811665, 4.18059558869762023064487041504, 4.43911701244612211404212251634, 5.24609411434638646076354631207, 5.48795844593139733630773568879, 6.12989355366287113998052346794, 6.17001541074125413712117936973, 7.05423431157513252126838443665, 7.21548466569915381287345844202, 8.087378566177631524568448356067

Graph of the $Z$-function along the critical line