L(s) = 1 | − 3-s + 2·7-s − 2·9-s − 12·13-s − 16·19-s − 2·21-s − 6·25-s + 5·27-s − 8·31-s − 2·37-s + 12·39-s + 4·43-s − 11·49-s + 16·57-s + 8·61-s − 4·63-s + 14·73-s + 6·75-s + 81-s − 24·91-s + 8·93-s − 16·97-s + 4·103-s + 32·109-s + 2·111-s + 24·117-s − 21·121-s + ⋯ |
L(s) = 1 | − 0.577·3-s + 0.755·7-s − 2/3·9-s − 3.32·13-s − 3.67·19-s − 0.436·21-s − 6/5·25-s + 0.962·27-s − 1.43·31-s − 0.328·37-s + 1.92·39-s + 0.609·43-s − 1.57·49-s + 2.11·57-s + 1.02·61-s − 0.503·63-s + 1.63·73-s + 0.692·75-s + 1/9·81-s − 2.51·91-s + 0.829·93-s − 1.62·97-s + 0.394·103-s + 3.06·109-s + 0.189·111-s + 2.21·117-s − 1.90·121-s + ⋯ |
Λ(s)=(=(788544s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(788544s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
788544
= 26⋅32⋅372
|
Sign: |
1
|
Analytic conductor: |
50.2782 |
Root analytic conductor: |
2.66283 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
2
|
Selberg data: |
(4, 788544, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C2 | 1+T+pT2 |
| 37 | C1 | (1+T)2 |
good | 5 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 7 | C2 | (1−T+pT2)2 |
| 11 | C2 | (1−T+pT2)(1+T+pT2) |
| 13 | C2 | (1+6T+pT2)2 |
| 17 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 19 | C2 | (1+8T+pT2)2 |
| 23 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 29 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 31 | C2 | (1+4T+pT2)2 |
| 41 | C2 | (1−7T+pT2)(1+7T+pT2) |
| 43 | C2 | (1−2T+pT2)2 |
| 47 | C2 | (1−9T+pT2)(1+9T+pT2) |
| 53 | C2 | (1−3T+pT2)(1+3T+pT2) |
| 59 | C2 | (1−12T+pT2)(1+12T+pT2) |
| 61 | C2 | (1−4T+pT2)2 |
| 67 | C2 | (1+pT2)2 |
| 71 | C2 | (1−7T+pT2)(1+7T+pT2) |
| 73 | C2 | (1−7T+pT2)2 |
| 79 | C2 | (1+pT2)2 |
| 83 | C2 | (1−3T+pT2)(1+3T+pT2) |
| 89 | C2 | (1−12T+pT2)(1+12T+pT2) |
| 97 | C2 | (1+8T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.78790307165276969482845597819, −7.36881114003389544173968798730, −6.93610596286674052907325458245, −6.40622823243653800847643763088, −6.09037614955138614512431406118, −5.35667365720479356016286420004, −5.06148787959059824431190870012, −4.67375669110578511814790030096, −4.21402845745683233262500412192, −3.62376221698954049890975125760, −2.50673634667839885265978774188, −2.32752817979750411282892328426, −1.85774356352190049046929099208, 0, 0,
1.85774356352190049046929099208, 2.32752817979750411282892328426, 2.50673634667839885265978774188, 3.62376221698954049890975125760, 4.21402845745683233262500412192, 4.67375669110578511814790030096, 5.06148787959059824431190870012, 5.35667365720479356016286420004, 6.09037614955138614512431406118, 6.40622823243653800847643763088, 6.93610596286674052907325458245, 7.36881114003389544173968798730, 7.78790307165276969482845597819