L(s) = 1 | − 8·2-s + 48·4-s + 53·5-s − 256·8-s − 424·10-s − 191·11-s − 379·13-s + 1.28e3·16-s + 340·17-s − 1.76e3·19-s + 2.54e3·20-s + 1.52e3·22-s − 3.23e3·23-s − 1.74e3·25-s + 3.03e3·26-s − 4.45e3·29-s + 1.99e3·31-s − 6.14e3·32-s − 2.72e3·34-s + 2.05e4·37-s + 1.41e4·38-s − 1.35e4·40-s − 8.81e3·41-s + 1.58e4·43-s − 9.16e3·44-s + 2.58e4·46-s − 3.39e4·47-s + ⋯ |
L(s) = 1 | − 1.41·2-s + 3/2·4-s + 0.948·5-s − 1.41·8-s − 1.34·10-s − 0.475·11-s − 0.621·13-s + 5/4·16-s + 0.285·17-s − 1.12·19-s + 1.42·20-s + 0.673·22-s − 1.27·23-s − 0.557·25-s + 0.879·26-s − 0.984·29-s + 0.372·31-s − 1.06·32-s − 0.403·34-s + 2.47·37-s + 1.58·38-s − 1.34·40-s − 0.818·41-s + 1.30·43-s − 0.713·44-s + 1.80·46-s − 2.23·47-s + ⋯ |
Λ(s)=(=(777924s/2ΓC(s)2L(s)Λ(6−s)
Λ(s)=(=(777924s/2ΓC(s+5/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
777924
= 22⋅34⋅74
|
Sign: |
1
|
Analytic conductor: |
20010.5 |
Root analytic conductor: |
11.8936 |
Motivic weight: |
5 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 777924, ( :5/2,5/2), 1)
|
Particular Values
L(3) |
≈ |
0.9789504100 |
L(21) |
≈ |
0.9789504100 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C1 | (1+p2T)2 |
| 3 | | 1 |
| 7 | | 1 |
good | 5 | D4 | 1−53T+4552T2−53p5T3+p10T4 |
| 11 | D4 | 1+191T+24656pT2+191p5T3+p10T4 |
| 13 | D4 | 1+379T+488066T2+379p5T3+p10T4 |
| 17 | D4 | 1−20pT+1908514T2−20p6T3+p10T4 |
| 19 | D4 | 1+1769T+2083758T2+1769p5T3+p10T4 |
| 23 | D4 | 1+3236T+15452206T2+3236p5T3+p10T4 |
| 29 | D4 | 1+4459T+37061638T2+4459p5T3+p10T4 |
| 31 | D4 | 1−1994T−6304813T2−1994p5T3+p10T4 |
| 37 | D4 | 1−20587T+238401006T2−20587p5T3+p10T4 |
| 41 | D4 | 1+8814T+240678562T2+8814p5T3+p10T4 |
| 43 | D4 | 1−15853T+338678796T2−15853p5T3+p10T4 |
| 47 | D4 | 1+33912T+687783466T2+33912p5T3+p10T4 |
| 53 | D4 | 1+49239T+1320998110T2+49239p5T3+p10T4 |
| 59 | D4 | 1−56735T+2230528834T2−56735p5T3+p10T4 |
| 61 | D4 | 1−67508T+2826067262T2−67508p5T3+p10T4 |
| 67 | D4 | 1−75723T+3861149404T2−75723p5T3+p10T4 |
| 71 | D4 | 1−8992T−681216182T2−8992p5T3+p10T4 |
| 73 | D4 | 1+3201T+2311013380T2+3201p5T3+p10T4 |
| 79 | D4 | 1−26612T+3997648985T2−26612p5T3+p10T4 |
| 83 | D4 | 1−949T+367057696T2−949p5T3+p10T4 |
| 89 | D4 | 1+176562T+18855802834T2+176562p5T3+p10T4 |
| 97 | D4 | 1+129423T+11942811256T2+129423p5T3+p10T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.593686679517239067262318382131, −9.588284496206203999313133115386, −8.544752750726073573826070796095, −8.488991103176270348195720063575, −7.998780579032255700507522745134, −7.63180831823893626339346397335, −7.24336026099987133946932629267, −6.47022427341208347137695788168, −6.33179203700402331810076632712, −5.97897514565038499076907754382, −5.21970523094121470338683659920, −5.08080512159538745278207114790, −3.93942948883886182771147621814, −3.92487015276632896605164943347, −2.72970349279722709516312789864, −2.58498643910345095811980946115, −1.83994450963448474943187488894, −1.76631922511798681376834421417, −0.78171304658874428420891550419, −0.30663075236324279734113369871,
0.30663075236324279734113369871, 0.78171304658874428420891550419, 1.76631922511798681376834421417, 1.83994450963448474943187488894, 2.58498643910345095811980946115, 2.72970349279722709516312789864, 3.92487015276632896605164943347, 3.93942948883886182771147621814, 5.08080512159538745278207114790, 5.21970523094121470338683659920, 5.97897514565038499076907754382, 6.33179203700402331810076632712, 6.47022427341208347137695788168, 7.24336026099987133946932629267, 7.63180831823893626339346397335, 7.998780579032255700507522745134, 8.488991103176270348195720063575, 8.544752750726073573826070796095, 9.588284496206203999313133115386, 9.593686679517239067262318382131