L(s) = 1 | − 8·2-s + 48·4-s + 53·5-s − 256·8-s − 424·10-s − 191·11-s − 379·13-s + 1.28e3·16-s + 340·17-s − 1.76e3·19-s + 2.54e3·20-s + 1.52e3·22-s − 3.23e3·23-s − 1.74e3·25-s + 3.03e3·26-s − 4.45e3·29-s + 1.99e3·31-s − 6.14e3·32-s − 2.72e3·34-s + 2.05e4·37-s + 1.41e4·38-s − 1.35e4·40-s − 8.81e3·41-s + 1.58e4·43-s − 9.16e3·44-s + 2.58e4·46-s − 3.39e4·47-s + ⋯ |
L(s) = 1 | − 1.41·2-s + 3/2·4-s + 0.948·5-s − 1.41·8-s − 1.34·10-s − 0.475·11-s − 0.621·13-s + 5/4·16-s + 0.285·17-s − 1.12·19-s + 1.42·20-s + 0.673·22-s − 1.27·23-s − 0.557·25-s + 0.879·26-s − 0.984·29-s + 0.372·31-s − 1.06·32-s − 0.403·34-s + 2.47·37-s + 1.58·38-s − 1.34·40-s − 0.818·41-s + 1.30·43-s − 0.713·44-s + 1.80·46-s − 2.23·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 777924 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 777924 ^{s/2} \, \Gamma_{\C}(s+5/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(3)\) |
\(\approx\) |
\(0.9789504100\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9789504100\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $\Gal(F_p)$ | $F_p(T)$ |
---|
bad | 2 | $C_1$ | \( ( 1 + p^{2} T )^{2} \) |
| 3 | | \( 1 \) |
| 7 | | \( 1 \) |
good | 5 | $D_{4}$ | \( 1 - 53 T + 4552 T^{2} - 53 p^{5} T^{3} + p^{10} T^{4} \) |
| 11 | $D_{4}$ | \( 1 + 191 T + 24656 p T^{2} + 191 p^{5} T^{3} + p^{10} T^{4} \) |
| 13 | $D_{4}$ | \( 1 + 379 T + 488066 T^{2} + 379 p^{5} T^{3} + p^{10} T^{4} \) |
| 17 | $D_{4}$ | \( 1 - 20 p T + 1908514 T^{2} - 20 p^{6} T^{3} + p^{10} T^{4} \) |
| 19 | $D_{4}$ | \( 1 + 1769 T + 2083758 T^{2} + 1769 p^{5} T^{3} + p^{10} T^{4} \) |
| 23 | $D_{4}$ | \( 1 + 3236 T + 15452206 T^{2} + 3236 p^{5} T^{3} + p^{10} T^{4} \) |
| 29 | $D_{4}$ | \( 1 + 4459 T + 37061638 T^{2} + 4459 p^{5} T^{3} + p^{10} T^{4} \) |
| 31 | $D_{4}$ | \( 1 - 1994 T - 6304813 T^{2} - 1994 p^{5} T^{3} + p^{10} T^{4} \) |
| 37 | $D_{4}$ | \( 1 - 20587 T + 238401006 T^{2} - 20587 p^{5} T^{3} + p^{10} T^{4} \) |
| 41 | $D_{4}$ | \( 1 + 8814 T + 240678562 T^{2} + 8814 p^{5} T^{3} + p^{10} T^{4} \) |
| 43 | $D_{4}$ | \( 1 - 15853 T + 338678796 T^{2} - 15853 p^{5} T^{3} + p^{10} T^{4} \) |
| 47 | $D_{4}$ | \( 1 + 33912 T + 687783466 T^{2} + 33912 p^{5} T^{3} + p^{10} T^{4} \) |
| 53 | $D_{4}$ | \( 1 + 49239 T + 1320998110 T^{2} + 49239 p^{5} T^{3} + p^{10} T^{4} \) |
| 59 | $D_{4}$ | \( 1 - 56735 T + 2230528834 T^{2} - 56735 p^{5} T^{3} + p^{10} T^{4} \) |
| 61 | $D_{4}$ | \( 1 - 67508 T + 2826067262 T^{2} - 67508 p^{5} T^{3} + p^{10} T^{4} \) |
| 67 | $D_{4}$ | \( 1 - 75723 T + 3861149404 T^{2} - 75723 p^{5} T^{3} + p^{10} T^{4} \) |
| 71 | $D_{4}$ | \( 1 - 8992 T - 681216182 T^{2} - 8992 p^{5} T^{3} + p^{10} T^{4} \) |
| 73 | $D_{4}$ | \( 1 + 3201 T + 2311013380 T^{2} + 3201 p^{5} T^{3} + p^{10} T^{4} \) |
| 79 | $D_{4}$ | \( 1 - 26612 T + 3997648985 T^{2} - 26612 p^{5} T^{3} + p^{10} T^{4} \) |
| 83 | $D_{4}$ | \( 1 - 949 T + 367057696 T^{2} - 949 p^{5} T^{3} + p^{10} T^{4} \) |
| 89 | $D_{4}$ | \( 1 + 176562 T + 18855802834 T^{2} + 176562 p^{5} T^{3} + p^{10} T^{4} \) |
| 97 | $D_{4}$ | \( 1 + 129423 T + 11942811256 T^{2} + 129423 p^{5} T^{3} + p^{10} T^{4} \) |
show more | | |
show less | | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.593686679517239067262318382131, −9.588284496206203999313133115386, −8.544752750726073573826070796095, −8.488991103176270348195720063575, −7.998780579032255700507522745134, −7.63180831823893626339346397335, −7.24336026099987133946932629267, −6.47022427341208347137695788168, −6.33179203700402331810076632712, −5.97897514565038499076907754382, −5.21970523094121470338683659920, −5.08080512159538745278207114790, −3.93942948883886182771147621814, −3.92487015276632896605164943347, −2.72970349279722709516312789864, −2.58498643910345095811980946115, −1.83994450963448474943187488894, −1.76631922511798681376834421417, −0.78171304658874428420891550419, −0.30663075236324279734113369871,
0.30663075236324279734113369871, 0.78171304658874428420891550419, 1.76631922511798681376834421417, 1.83994450963448474943187488894, 2.58498643910345095811980946115, 2.72970349279722709516312789864, 3.92487015276632896605164943347, 3.93942948883886182771147621814, 5.08080512159538745278207114790, 5.21970523094121470338683659920, 5.97897514565038499076907754382, 6.33179203700402331810076632712, 6.47022427341208347137695788168, 7.24336026099987133946932629267, 7.63180831823893626339346397335, 7.998780579032255700507522745134, 8.488991103176270348195720063575, 8.544752750726073573826070796095, 9.588284496206203999313133115386, 9.593686679517239067262318382131