L(s) = 1 | + 2-s − 2·4-s − 5-s − 3·8-s − 10-s + 5·11-s + 4·13-s + 16-s + 11·17-s − 3·19-s + 2·20-s + 5·22-s − 2·23-s + 2·25-s + 4·26-s − 9·31-s + 2·32-s + 11·34-s − 4·37-s − 3·38-s + 3·40-s − 41-s − 10·43-s − 10·44-s − 2·46-s + 14·47-s − 9·49-s + ⋯ |
L(s) = 1 | + 0.707·2-s − 4-s − 0.447·5-s − 1.06·8-s − 0.316·10-s + 1.50·11-s + 1.10·13-s + 1/4·16-s + 2.66·17-s − 0.688·19-s + 0.447·20-s + 1.06·22-s − 0.417·23-s + 2/5·25-s + 0.784·26-s − 1.61·31-s + 0.353·32-s + 1.88·34-s − 0.657·37-s − 0.486·38-s + 0.474·40-s − 0.156·41-s − 1.52·43-s − 1.50·44-s − 0.294·46-s + 2.04·47-s − 9/7·49-s + ⋯ |
Λ(s)=(=(57289761s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(57289761s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
57289761
= 34⋅294
|
Sign: |
1
|
Analytic conductor: |
3652.84 |
Root analytic conductor: |
7.77423 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 57289761, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
1.604785306 |
L(21) |
≈ |
1.604785306 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | | 1 |
| 29 | | 1 |
good | 2 | D4 | 1−T+3T2−pT3+p2T4 |
| 5 | D4 | 1+T−T2+pT3+p2T4 |
| 7 | C22 | 1+9T2+p2T4 |
| 11 | D4 | 1−5T+27T2−5pT3+p2T4 |
| 13 | D4 | 1−4T+25T2−4pT3+p2T4 |
| 17 | D4 | 1−11T+63T2−11pT3+p2T4 |
| 19 | D4 | 1+3T+29T2+3pT3+p2T4 |
| 23 | D4 | 1+2T+42T2+2pT3+p2T4 |
| 31 | D4 | 1+9T+51T2+9pT3+p2T4 |
| 37 | D4 | 1+4T+33T2+4pT3+p2T4 |
| 41 | D4 | 1+T+71T2+pT3+p2T4 |
| 43 | D4 | 1+10T+106T2+10pT3+p2T4 |
| 47 | C2 | (1−7T+pT2)2 |
| 53 | C2 | (1−2T+pT2)2 |
| 59 | D4 | 1+T+87T2+pT3+p2T4 |
| 61 | D4 | 1−T+121T2−pT3+p2T4 |
| 67 | D4 | 1+12T+150T2+12pT3+p2T4 |
| 71 | D4 | 1+12T+158T2+12pT3+p2T4 |
| 73 | D4 | 1+14T+150T2+14pT3+p2T4 |
| 79 | D4 | 1+T+127T2+pT3+p2T4 |
| 83 | D4 | 1−2T+87T2−2pT3+p2T4 |
| 89 | D4 | 1−4T+137T2−4pT3+p2T4 |
| 97 | D4 | 1+13T+135T2+13pT3+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.88459943534720628157692914467, −7.83537674822379891727120988647, −7.44017077797015206223541996258, −6.84037561779015388678618355210, −6.72017767568210285323956542016, −6.22673600252947180946836472461, −5.78410466072182894272959827141, −5.53140973067693156846699179620, −5.35783377548697195677269349012, −4.88793211929119153623588473287, −4.26173422144343011549242531135, −4.13267674993182048909767688163, −3.70633238115869278558748447001, −3.68208429220805701304412300669, −3.00317137124081724324657105516, −2.90569629734524821377489212328, −1.78482537912958157657611169535, −1.43571576194055332557475879467, −1.17282855779647595164503915840, −0.29756994223083770618652804036,
0.29756994223083770618652804036, 1.17282855779647595164503915840, 1.43571576194055332557475879467, 1.78482537912958157657611169535, 2.90569629734524821377489212328, 3.00317137124081724324657105516, 3.68208429220805701304412300669, 3.70633238115869278558748447001, 4.13267674993182048909767688163, 4.26173422144343011549242531135, 4.88793211929119153623588473287, 5.35783377548697195677269349012, 5.53140973067693156846699179620, 5.78410466072182894272959827141, 6.22673600252947180946836472461, 6.72017767568210285323956542016, 6.84037561779015388678618355210, 7.44017077797015206223541996258, 7.83537674822379891727120988647, 7.88459943534720628157692914467