L(s) = 1 | + 4-s − 6·5-s − 4·7-s − 5·9-s + 6·11-s + 13-s + 16-s − 6·17-s − 4·19-s − 6·20-s + 6·23-s + 17·25-s − 4·28-s + 6·29-s − 4·31-s + 24·35-s − 5·36-s − 10·37-s + 6·44-s + 30·45-s − 49-s + 52-s − 6·53-s − 36·55-s + 20·63-s + 64-s − 6·65-s + ⋯ |
L(s) = 1 | + 1/2·4-s − 2.68·5-s − 1.51·7-s − 5/3·9-s + 1.80·11-s + 0.277·13-s + 1/4·16-s − 1.45·17-s − 0.917·19-s − 1.34·20-s + 1.25·23-s + 17/5·25-s − 0.755·28-s + 1.11·29-s − 0.718·31-s + 4.05·35-s − 5/6·36-s − 1.64·37-s + 0.904·44-s + 4.47·45-s − 1/7·49-s + 0.138·52-s − 0.824·53-s − 4.85·55-s + 2.51·63-s + 1/8·64-s − 0.744·65-s + ⋯ |
Λ(s)=(=(8788s/2ΓC(s)2L(s)−Λ(2−s)
Λ(s)=(=(8788s/2ΓC(s+1/2)2L(s)−Λ(1−s)
Degree: |
4 |
Conductor: |
8788
= 22⋅133
|
Sign: |
−1
|
Analytic conductor: |
0.560330 |
Root analytic conductor: |
0.865189 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
1
|
Selberg data: |
(4, 8788, ( :1/2,1/2), −1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C1×C1 | (1−T)(1+T) |
| 13 | C1 | 1−T |
good | 3 | C2 | (1−T+pT2)(1+T+pT2) |
| 5 | C2 | (1+3T+pT2)2 |
| 7 | C2×C2 | (1+T+pT2)(1+3T+pT2) |
| 11 | C2×C2 | (1−6T+pT2)(1+pT2) |
| 17 | C2 | (1+3T+pT2)2 |
| 19 | C2×C2 | (1−2T+pT2)(1+6T+pT2) |
| 23 | C2×C2 | (1−6T+pT2)(1+pT2) |
| 29 | C2×C2 | (1−6T+pT2)(1+pT2) |
| 31 | C2×C2 | (1+pT2)(1+4T+pT2) |
| 37 | C2×C2 | (1+3T+pT2)(1+7T+pT2) |
| 41 | C2 | (1+pT2)2 |
| 43 | C2 | (1−T+pT2)(1+T+pT2) |
| 47 | C2 | (1−3T+pT2)(1+3T+pT2) |
| 53 | C2×C2 | (1+pT2)(1+6T+pT2) |
| 59 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 61 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 67 | C2×C2 | (1−14T+pT2)(1+12T+pT2) |
| 71 | C2×C2 | (1−15T+pT2)(1+3T+pT2) |
| 73 | C2×C2 | (1−2T+pT2)(1+6T+pT2) |
| 79 | C2×C2 | (1−10T+pT2)(1−8T+pT2) |
| 83 | C2×C2 | (1−12T+pT2)(1−6T+pT2) |
| 89 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 97 | C2×C2 | (1+10T+pT2)(1+12T+pT2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−16.7401598333, −16.3289342707, −16.1610422211, −15.3407982120, −15.2621223361, −14.7871828532, −14.1081230548, −13.5230676379, −12.6948580012, −12.1081086828, −12.0906172632, −11.2148699926, −11.1734099077, −10.6571590377, −9.25208611998, −9.14676247888, −8.28912505160, −8.14577120022, −6.89586188103, −6.76423132328, −6.28038385959, −4.97317601948, −3.91117219162, −3.64028761626, −2.87766967615, 0,
2.87766967615, 3.64028761626, 3.91117219162, 4.97317601948, 6.28038385959, 6.76423132328, 6.89586188103, 8.14577120022, 8.28912505160, 9.14676247888, 9.25208611998, 10.6571590377, 11.1734099077, 11.2148699926, 12.0906172632, 12.1081086828, 12.6948580012, 13.5230676379, 14.1081230548, 14.7871828532, 15.2621223361, 15.3407982120, 16.1610422211, 16.3289342707, 16.7401598333