L(s) = 1 | + 4-s − 6·5-s − 4·7-s − 5·9-s + 6·11-s + 13-s + 16-s − 6·17-s − 4·19-s − 6·20-s + 6·23-s + 17·25-s − 4·28-s + 6·29-s − 4·31-s + 24·35-s − 5·36-s − 10·37-s + 6·44-s + 30·45-s − 49-s + 52-s − 6·53-s − 36·55-s + 20·63-s + 64-s − 6·65-s + ⋯ |
L(s) = 1 | + 1/2·4-s − 2.68·5-s − 1.51·7-s − 5/3·9-s + 1.80·11-s + 0.277·13-s + 1/4·16-s − 1.45·17-s − 0.917·19-s − 1.34·20-s + 1.25·23-s + 17/5·25-s − 0.755·28-s + 1.11·29-s − 0.718·31-s + 4.05·35-s − 5/6·36-s − 1.64·37-s + 0.904·44-s + 4.47·45-s − 1/7·49-s + 0.138·52-s − 0.824·53-s − 4.85·55-s + 2.51·63-s + 1/8·64-s − 0.744·65-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 8788 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8788 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $\Gal(F_p)$ | $F_p(T)$ |
---|
bad | 2 | $C_1$$\times$$C_1$ | \( ( 1 - T )( 1 + T ) \) |
| 13 | $C_1$ | \( 1 - T \) |
good | 3 | $C_2$ | \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \) |
| 5 | $C_2$ | \( ( 1 + 3 T + p T^{2} )^{2} \) |
| 7 | $C_2$$\times$$C_2$ | \( ( 1 + T + p T^{2} )( 1 + 3 T + p T^{2} ) \) |
| 11 | $C_2$$\times$$C_2$ | \( ( 1 - 6 T + p T^{2} )( 1 + p T^{2} ) \) |
| 17 | $C_2$ | \( ( 1 + 3 T + p T^{2} )^{2} \) |
| 19 | $C_2$$\times$$C_2$ | \( ( 1 - 2 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) |
| 23 | $C_2$$\times$$C_2$ | \( ( 1 - 6 T + p T^{2} )( 1 + p T^{2} ) \) |
| 29 | $C_2$$\times$$C_2$ | \( ( 1 - 6 T + p T^{2} )( 1 + p T^{2} ) \) |
| 31 | $C_2$$\times$$C_2$ | \( ( 1 + p T^{2} )( 1 + 4 T + p T^{2} ) \) |
| 37 | $C_2$$\times$$C_2$ | \( ( 1 + 3 T + p T^{2} )( 1 + 7 T + p T^{2} ) \) |
| 41 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 43 | $C_2$ | \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \) |
| 47 | $C_2$ | \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \) |
| 53 | $C_2$$\times$$C_2$ | \( ( 1 + p T^{2} )( 1 + 6 T + p T^{2} ) \) |
| 59 | $C_2$ | \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) |
| 61 | $C_2$ | \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) |
| 67 | $C_2$$\times$$C_2$ | \( ( 1 - 14 T + p T^{2} )( 1 + 12 T + p T^{2} ) \) |
| 71 | $C_2$$\times$$C_2$ | \( ( 1 - 15 T + p T^{2} )( 1 + 3 T + p T^{2} ) \) |
| 73 | $C_2$$\times$$C_2$ | \( ( 1 - 2 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) |
| 79 | $C_2$$\times$$C_2$ | \( ( 1 - 10 T + p T^{2} )( 1 - 8 T + p T^{2} ) \) |
| 83 | $C_2$$\times$$C_2$ | \( ( 1 - 12 T + p T^{2} )( 1 - 6 T + p T^{2} ) \) |
| 89 | $C_2$ | \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) |
| 97 | $C_2$$\times$$C_2$ | \( ( 1 + 10 T + p T^{2} )( 1 + 12 T + p T^{2} ) \) |
show more | | |
show less | | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−16.7401598333, −16.3289342707, −16.1610422211, −15.3407982120, −15.2621223361, −14.7871828532, −14.1081230548, −13.5230676379, −12.6948580012, −12.1081086828, −12.0906172632, −11.2148699926, −11.1734099077, −10.6571590377, −9.25208611998, −9.14676247888, −8.28912505160, −8.14577120022, −6.89586188103, −6.76423132328, −6.28038385959, −4.97317601948, −3.91117219162, −3.64028761626, −2.87766967615, 0,
2.87766967615, 3.64028761626, 3.91117219162, 4.97317601948, 6.28038385959, 6.76423132328, 6.89586188103, 8.14577120022, 8.28912505160, 9.14676247888, 9.25208611998, 10.6571590377, 11.1734099077, 11.2148699926, 12.0906172632, 12.1081086828, 12.6948580012, 13.5230676379, 14.1081230548, 14.7871828532, 15.2621223361, 15.3407982120, 16.1610422211, 16.3289342707, 16.7401598333