L(s) = 1 | + 2·3-s + 4-s − 3·9-s + 2·12-s + 13-s + 16-s − 6·17-s − 25-s − 14·27-s + 12·29-s − 3·36-s + 2·39-s − 2·43-s + 2·48-s − 13·49-s − 12·51-s + 52-s + 16·61-s + 64-s − 6·68-s − 2·75-s + 16·79-s − 4·81-s + 24·87-s − 100-s − 24·101-s − 8·103-s + ⋯ |
L(s) = 1 | + 1.15·3-s + 1/2·4-s − 9-s + 0.577·12-s + 0.277·13-s + 1/4·16-s − 1.45·17-s − 1/5·25-s − 2.69·27-s + 2.22·29-s − 1/2·36-s + 0.320·39-s − 0.304·43-s + 0.288·48-s − 1.85·49-s − 1.68·51-s + 0.138·52-s + 2.04·61-s + 1/8·64-s − 0.727·68-s − 0.230·75-s + 1.80·79-s − 4/9·81-s + 2.57·87-s − 0.0999·100-s − 2.38·101-s − 0.788·103-s + ⋯ |
Λ(s)=(=(8788s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(8788s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
8788
= 22⋅133
|
Sign: |
1
|
Analytic conductor: |
0.560330 |
Root analytic conductor: |
0.865189 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 8788, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
1.327050077 |
L(21) |
≈ |
1.327050077 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C1×C1 | (1−T)(1+T) |
| 13 | C1 | 1−T |
good | 3 | C2 | (1−T+pT2)2 |
| 5 | C2 | (1−3T+pT2)(1+3T+pT2) |
| 7 | C2 | (1−T+pT2)(1+T+pT2) |
| 11 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 17 | C2 | (1+3T+pT2)2 |
| 19 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 23 | C2 | (1+pT2)2 |
| 29 | C2 | (1−6T+pT2)2 |
| 31 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 37 | C2 | (1−7T+pT2)(1+7T+pT2) |
| 41 | C2 | (1+pT2)2 |
| 43 | C2 | (1+T+pT2)2 |
| 47 | C2 | (1−3T+pT2)(1+3T+pT2) |
| 53 | C2 | (1+pT2)2 |
| 59 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 61 | C2 | (1−8T+pT2)2 |
| 67 | C2 | (1−14T+pT2)(1+14T+pT2) |
| 71 | C2 | (1−3T+pT2)(1+3T+pT2) |
| 73 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 79 | C2 | (1−8T+pT2)2 |
| 83 | C2 | (1−12T+pT2)(1+12T+pT2) |
| 89 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 97 | C2 | (1−10T+pT2)(1+10T+pT2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.52736358384083380205994337321, −11.21486999262721520146961750481, −10.59579744741587591987377046637, −9.848425754886298251834442498391, −9.252086119982469784390910809299, −8.631851122063147597031259612932, −8.289125051595985253760732717123, −7.85100333312502477176899037562, −6.76423132327857768444846951818, −6.43741307804194710670707219872, −5.56442463767257268744193982616, −4.68671862775252250000074194944, −3.64028761626013442697591583469, −2.86630826934752796258245605486, −2.19431989234797768682378556675,
2.19431989234797768682378556675, 2.86630826934752796258245605486, 3.64028761626013442697591583469, 4.68671862775252250000074194944, 5.56442463767257268744193982616, 6.43741307804194710670707219872, 6.76423132327857768444846951818, 7.85100333312502477176899037562, 8.289125051595985253760732717123, 8.631851122063147597031259612932, 9.252086119982469784390910809299, 9.848425754886298251834442498391, 10.59579744741587591987377046637, 11.21486999262721520146961750481, 11.52736358384083380205994337321