L(s) = 1 | + 2·9-s + 2·11-s − 8·23-s − 8·25-s − 16·37-s − 8·43-s − 12·53-s + 16·67-s − 16·71-s − 32·79-s − 5·81-s + 4·99-s + 16·107-s + 32·109-s + 12·113-s + 3·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 24·169-s + 173-s + ⋯ |
L(s) = 1 | + 2/3·9-s + 0.603·11-s − 1.66·23-s − 8/5·25-s − 2.63·37-s − 1.21·43-s − 1.64·53-s + 1.95·67-s − 1.89·71-s − 3.60·79-s − 5/9·81-s + 0.402·99-s + 1.54·107-s + 3.06·109-s + 1.12·113-s + 3/11·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 1.84·169-s + 0.0760·173-s + ⋯ |
Λ(s)=(=(74373376s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(74373376s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
74373376
= 28⋅74⋅112
|
Sign: |
1
|
Analytic conductor: |
4742.11 |
Root analytic conductor: |
8.29837 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
2
|
Selberg data: |
(4, 74373376, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 7 | | 1 |
| 11 | C1 | (1−T)2 |
good | 3 | C22 | 1−2T2+p2T4 |
| 5 | C22 | 1+8T2+p2T4 |
| 13 | C22 | 1+24T2+p2T4 |
| 17 | C22 | 1−16T2+p2T4 |
| 19 | C22 | 1+30T2+p2T4 |
| 23 | C2 | (1+4T+pT2)2 |
| 29 | C2 | (1+pT2)2 |
| 31 | C22 | 1+30T2+p2T4 |
| 37 | C2 | (1+8T+pT2)2 |
| 41 | C22 | 1−16T2+p2T4 |
| 43 | C2 | (1+4T+pT2)2 |
| 47 | C2 | (1+pT2)2 |
| 53 | C2 | (1+6T+pT2)2 |
| 59 | C22 | 1+46T2+p2T4 |
| 61 | C22 | 1+120T2+p2T4 |
| 67 | C2 | (1−8T+pT2)2 |
| 71 | C2 | (1+8T+pT2)2 |
| 73 | C22 | 1+144T2+p2T4 |
| 79 | C2 | (1+16T+pT2)2 |
| 83 | C22 | 1+158T2+p2T4 |
| 89 | C22 | 1−64T2+p2T4 |
| 97 | C22 | 1+96T2+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.46760761991361247988733304208, −7.29539316156711661568897171555, −7.04413911466501462583926811631, −6.47726598872353544502337158923, −6.26009793297953143686702153148, −5.95446841228358925288734060977, −5.56911407749023556267444126448, −5.17855580284254959492776254623, −4.79348895076068348219361886611, −4.29657086124467134879326308352, −4.13480041904322698132155791797, −3.70980917516283042942945851155, −3.23965352148593878850875245520, −3.10662169369221883707936802326, −2.18229187698172178580742072031, −1.91441368626081719640283111893, −1.64898519759039438656792173194, −1.12113155743030734812238244327, 0, 0,
1.12113155743030734812238244327, 1.64898519759039438656792173194, 1.91441368626081719640283111893, 2.18229187698172178580742072031, 3.10662169369221883707936802326, 3.23965352148593878850875245520, 3.70980917516283042942945851155, 4.13480041904322698132155791797, 4.29657086124467134879326308352, 4.79348895076068348219361886611, 5.17855580284254959492776254623, 5.56911407749023556267444126448, 5.95446841228358925288734060977, 6.26009793297953143686702153148, 6.47726598872353544502337158923, 7.04413911466501462583926811631, 7.29539316156711661568897171555, 7.46760761991361247988733304208