Properties

Label 4-8624e2-1.1-c1e2-0-24
Degree $4$
Conductor $74373376$
Sign $1$
Analytic cond. $4742.11$
Root an. cond. $8.29837$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·9-s + 2·11-s − 8·23-s − 8·25-s − 16·37-s − 8·43-s − 12·53-s + 16·67-s − 16·71-s − 32·79-s − 5·81-s + 4·99-s + 16·107-s + 32·109-s + 12·113-s + 3·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 24·169-s + 173-s + ⋯
L(s)  = 1  + 2/3·9-s + 0.603·11-s − 1.66·23-s − 8/5·25-s − 2.63·37-s − 1.21·43-s − 1.64·53-s + 1.95·67-s − 1.89·71-s − 3.60·79-s − 5/9·81-s + 0.402·99-s + 1.54·107-s + 3.06·109-s + 1.12·113-s + 3/11·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 1.84·169-s + 0.0760·173-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 74373376 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 74373376 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(74373376\)    =    \(2^{8} \cdot 7^{4} \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(4742.11\)
Root analytic conductor: \(8.29837\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 74373376,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
7 \( 1 \)
11$C_1$ \( ( 1 - T )^{2} \)
good3$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
5$C_2^2$ \( 1 + 8 T^{2} + p^{2} T^{4} \)
13$C_2^2$ \( 1 + 24 T^{2} + p^{2} T^{4} \)
17$C_2^2$ \( 1 - 16 T^{2} + p^{2} T^{4} \)
19$C_2^2$ \( 1 + 30 T^{2} + p^{2} T^{4} \)
23$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
29$C_2$ \( ( 1 + p T^{2} )^{2} \)
31$C_2^2$ \( 1 + 30 T^{2} + p^{2} T^{4} \)
37$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
41$C_2^2$ \( 1 - 16 T^{2} + p^{2} T^{4} \)
43$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 + p T^{2} )^{2} \)
53$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
59$C_2^2$ \( 1 + 46 T^{2} + p^{2} T^{4} \)
61$C_2^2$ \( 1 + 120 T^{2} + p^{2} T^{4} \)
67$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
73$C_2^2$ \( 1 + 144 T^{2} + p^{2} T^{4} \)
79$C_2$ \( ( 1 + 16 T + p T^{2} )^{2} \)
83$C_2^2$ \( 1 + 158 T^{2} + p^{2} T^{4} \)
89$C_2^2$ \( 1 - 64 T^{2} + p^{2} T^{4} \)
97$C_2^2$ \( 1 + 96 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.46760761991361247988733304208, −7.29539316156711661568897171555, −7.04413911466501462583926811631, −6.47726598872353544502337158923, −6.26009793297953143686702153148, −5.95446841228358925288734060977, −5.56911407749023556267444126448, −5.17855580284254959492776254623, −4.79348895076068348219361886611, −4.29657086124467134879326308352, −4.13480041904322698132155791797, −3.70980917516283042942945851155, −3.23965352148593878850875245520, −3.10662169369221883707936802326, −2.18229187698172178580742072031, −1.91441368626081719640283111893, −1.64898519759039438656792173194, −1.12113155743030734812238244327, 0, 0, 1.12113155743030734812238244327, 1.64898519759039438656792173194, 1.91441368626081719640283111893, 2.18229187698172178580742072031, 3.10662169369221883707936802326, 3.23965352148593878850875245520, 3.70980917516283042942945851155, 4.13480041904322698132155791797, 4.29657086124467134879326308352, 4.79348895076068348219361886611, 5.17855580284254959492776254623, 5.56911407749023556267444126448, 5.95446841228358925288734060977, 6.26009793297953143686702153148, 6.47726598872353544502337158923, 7.04413911466501462583926811631, 7.29539316156711661568897171555, 7.46760761991361247988733304208

Graph of the $Z$-function along the critical line