L(s) = 1 | − 3·4-s + 5·16-s − 4·19-s − 25-s + 8·43-s − 14·49-s + 4·61-s − 3·64-s + 20·73-s + 12·76-s + 3·100-s + 6·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 22·169-s − 24·172-s + 173-s + 179-s + 181-s + 191-s + ⋯ |
L(s) = 1 | − 3/2·4-s + 5/4·16-s − 0.917·19-s − 1/5·25-s + 1.21·43-s − 2·49-s + 0.512·61-s − 3/8·64-s + 2.34·73-s + 1.37·76-s + 3/10·100-s + 6/11·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 1.69·169-s − 1.82·172-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + ⋯ |
Λ(s)=(=(731025s/2ΓC(s)2L(s)−Λ(2−s)
Λ(s)=(=(731025s/2ΓC(s+1/2)2L(s)−Λ(1−s)
Degree: |
4 |
Conductor: |
731025
= 34⋅52⋅192
|
Sign: |
−1
|
Analytic conductor: |
46.6107 |
Root analytic conductor: |
2.61289 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
1
|
Selberg data: |
(4, 731025, ( :1/2,1/2), −1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | | 1 |
| 5 | C2 | 1+T2 |
| 19 | C2 | 1+4T+pT2 |
good | 2 | C2 | (1−T+pT2)(1+T+pT2) |
| 7 | C2 | (1+pT2)2 |
| 11 | C22 | 1−6T2+p2T4 |
| 13 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 17 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 23 | C2 | (1−pT2)2 |
| 29 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 31 | C2 | (1+pT2)2 |
| 37 | C2 | (1−10T+pT2)(1+10T+pT2) |
| 41 | C2 | (1−10T+pT2)(1+10T+pT2) |
| 43 | C2 | (1−4T+pT2)2 |
| 47 | C22 | 1−30T2+p2T4 |
| 53 | C2 | (1−10T+pT2)(1+10T+pT2) |
| 59 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 61 | C2 | (1−2T+pT2)2 |
| 67 | C2 | (1−12T+pT2)(1+12T+pT2) |
| 71 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 73 | C2 | (1−10T+pT2)2 |
| 79 | C2 | (1+pT2)2 |
| 83 | C22 | 1−22T2+p2T4 |
| 89 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 97 | C2 | (1−2T+pT2)(1+2T+pT2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.277973675841816239455228595843, −7.74415933620971995578395538835, −7.30092387852484149612701981622, −6.59771949886092311755977163671, −6.31772517182021644904628485653, −5.69423999100043150300968189227, −5.24361911723200874500658764166, −4.72856937868326294980636111340, −4.43241097382010054660439073995, −3.79236167186905386391550194299, −3.48722200346027363540172637161, −2.62640101086036899692230571679, −1.94452644213633590102628391910, −0.959422674505439198259115714954, 0,
0.959422674505439198259115714954, 1.94452644213633590102628391910, 2.62640101086036899692230571679, 3.48722200346027363540172637161, 3.79236167186905386391550194299, 4.43241097382010054660439073995, 4.72856937868326294980636111340, 5.24361911723200874500658764166, 5.69423999100043150300968189227, 6.31772517182021644904628485653, 6.59771949886092311755977163671, 7.30092387852484149612701981622, 7.74415933620971995578395538835, 8.277973675841816239455228595843