Properties

Label 4-855e2-1.1-c1e2-0-6
Degree $4$
Conductor $731025$
Sign $-1$
Analytic cond. $46.6107$
Root an. cond. $2.61289$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·4-s + 5·16-s − 4·19-s − 25-s + 8·43-s − 14·49-s + 4·61-s − 3·64-s + 20·73-s + 12·76-s + 3·100-s + 6·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 22·169-s − 24·172-s + 173-s + 179-s + 181-s + 191-s + ⋯
L(s)  = 1  − 3/2·4-s + 5/4·16-s − 0.917·19-s − 1/5·25-s + 1.21·43-s − 2·49-s + 0.512·61-s − 3/8·64-s + 2.34·73-s + 1.37·76-s + 3/10·100-s + 6/11·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 1.69·169-s − 1.82·172-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 731025 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 731025 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(731025\)    =    \(3^{4} \cdot 5^{2} \cdot 19^{2}\)
Sign: $-1$
Analytic conductor: \(46.6107\)
Root analytic conductor: \(2.61289\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 731025,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
5$C_2$ \( 1 + T^{2} \)
19$C_2$ \( 1 + 4 T + p T^{2} \)
good2$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
7$C_2$ \( ( 1 + p T^{2} )^{2} \)
11$C_2^2$ \( 1 - 6 T^{2} + p^{2} T^{4} \)
13$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
17$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
23$C_2$ \( ( 1 - p T^{2} )^{2} \)
29$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
31$C_2$ \( ( 1 + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
41$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
43$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
47$C_2^2$ \( 1 - 30 T^{2} + p^{2} T^{4} \)
53$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
59$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
61$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
71$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
73$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 + p T^{2} )^{2} \)
83$C_2^2$ \( 1 - 22 T^{2} + p^{2} T^{4} \)
89$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
97$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.277973675841816239455228595843, −7.74415933620971995578395538835, −7.30092387852484149612701981622, −6.59771949886092311755977163671, −6.31772517182021644904628485653, −5.69423999100043150300968189227, −5.24361911723200874500658764166, −4.72856937868326294980636111340, −4.43241097382010054660439073995, −3.79236167186905386391550194299, −3.48722200346027363540172637161, −2.62640101086036899692230571679, −1.94452644213633590102628391910, −0.959422674505439198259115714954, 0, 0.959422674505439198259115714954, 1.94452644213633590102628391910, 2.62640101086036899692230571679, 3.48722200346027363540172637161, 3.79236167186905386391550194299, 4.43241097382010054660439073995, 4.72856937868326294980636111340, 5.24361911723200874500658764166, 5.69423999100043150300968189227, 6.31772517182021644904628485653, 6.59771949886092311755977163671, 7.30092387852484149612701981622, 7.74415933620971995578395538835, 8.277973675841816239455228595843

Graph of the $Z$-function along the critical line