L(s) = 1 | + 4-s + 4·7-s − 3·16-s + 2·19-s − 25-s + 4·28-s + 8·31-s + 8·37-s − 4·43-s + 2·49-s − 12·61-s − 7·64-s − 8·67-s + 12·73-s + 2·76-s + 8·79-s + 8·97-s − 100-s + 24·103-s + 12·109-s − 12·112-s − 2·121-s + 8·124-s + 127-s + 131-s + 8·133-s + 137-s + ⋯ |
L(s) = 1 | + 1/2·4-s + 1.51·7-s − 3/4·16-s + 0.458·19-s − 1/5·25-s + 0.755·28-s + 1.43·31-s + 1.31·37-s − 0.609·43-s + 2/7·49-s − 1.53·61-s − 7/8·64-s − 0.977·67-s + 1.40·73-s + 0.229·76-s + 0.900·79-s + 0.812·97-s − 0.0999·100-s + 2.36·103-s + 1.14·109-s − 1.13·112-s − 0.181·121-s + 0.718·124-s + 0.0887·127-s + 0.0873·131-s + 0.693·133-s + 0.0854·137-s + ⋯ |
Λ(s)=(=(731025s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(731025s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
731025
= 34⋅52⋅192
|
Sign: |
1
|
Analytic conductor: |
46.6107 |
Root analytic conductor: |
2.61289 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 731025, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
2.821651881 |
L(21) |
≈ |
2.821651881 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | | 1 |
| 5 | C2 | 1+T2 |
| 19 | C1 | (1−T)2 |
good | 2 | C22 | 1−T2+p2T4 |
| 7 | C2×C2 | (1−4T+pT2)(1+pT2) |
| 11 | C22 | 1+2T2+p2T4 |
| 13 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 17 | C2 | (1+pT2)2 |
| 23 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 29 | C22 | 1−34T2+p2T4 |
| 31 | C2×C2 | (1−8T+pT2)(1+pT2) |
| 37 | C2×C2 | (1−6T+pT2)(1−2T+pT2) |
| 41 | C22 | 1−26T2+p2T4 |
| 43 | C2×C2 | (1−4T+pT2)(1+8T+pT2) |
| 47 | C22 | 1−38T2+p2T4 |
| 53 | C2 | (1−10T+pT2)(1+10T+pT2) |
| 59 | C22 | 1−74T2+p2T4 |
| 61 | C2×C2 | (1−2T+pT2)(1+14T+pT2) |
| 67 | C2×C2 | (1−4T+pT2)(1+12T+pT2) |
| 71 | C22 | 1−18T2+p2T4 |
| 73 | C2 | (1−6T+pT2)2 |
| 79 | C2×C2 | (1−12T+pT2)(1+4T+pT2) |
| 83 | C22 | 1+2T2+p2T4 |
| 89 | C22 | 1+102T2+p2T4 |
| 97 | C2×C2 | (1−14T+pT2)(1+6T+pT2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.167798775468386922497017119471, −7.81629925534961684383397522072, −7.56286056811260075809566840048, −7.01862500787748876169081978041, −6.39492674973921678255633336802, −6.19358130523662731614596938467, −5.54933623644349374683330696508, −4.92586372856273525185184956084, −4.62565435014953298320952525244, −4.29428437177532962119033259859, −3.40322077346350739176953316718, −2.88611679888280351701569505957, −2.15652647337383028968047721099, −1.72158885252222435895990718582, −0.853110982786161162683313101739,
0.853110982786161162683313101739, 1.72158885252222435895990718582, 2.15652647337383028968047721099, 2.88611679888280351701569505957, 3.40322077346350739176953316718, 4.29428437177532962119033259859, 4.62565435014953298320952525244, 4.92586372856273525185184956084, 5.54933623644349374683330696508, 6.19358130523662731614596938467, 6.39492674973921678255633336802, 7.01862500787748876169081978041, 7.56286056811260075809566840048, 7.81629925534961684383397522072, 8.167798775468386922497017119471