L(s) = 1 | + 2·2-s + 2·4-s − 5-s − 4·7-s + 4·8-s − 2·10-s + 6·11-s − 6·13-s − 8·14-s + 8·16-s + 6·17-s − 7·19-s − 2·20-s + 12·22-s − 8·23-s − 12·26-s − 8·28-s + 7·29-s + 18·31-s + 8·32-s + 12·34-s + 4·35-s − 4·37-s − 14·38-s − 4·40-s + 6·41-s − 10·43-s + ⋯ |
L(s) = 1 | + 1.41·2-s + 4-s − 0.447·5-s − 1.51·7-s + 1.41·8-s − 0.632·10-s + 1.80·11-s − 1.66·13-s − 2.13·14-s + 2·16-s + 1.45·17-s − 1.60·19-s − 0.447·20-s + 2.55·22-s − 1.66·23-s − 2.35·26-s − 1.51·28-s + 1.29·29-s + 3.23·31-s + 1.41·32-s + 2.05·34-s + 0.676·35-s − 0.657·37-s − 2.27·38-s − 0.632·40-s + 0.937·41-s − 1.52·43-s + ⋯ |
Λ(s)=(=(731025s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(731025s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
731025
= 34⋅52⋅192
|
Sign: |
1
|
Analytic conductor: |
46.6107 |
Root analytic conductor: |
2.61289 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 731025, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
3.670598304 |
L(21) |
≈ |
3.670598304 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | | 1 |
| 5 | C2 | 1+T+T2 |
| 19 | C2 | 1+7T+pT2 |
good | 2 | C22 | 1−pT+pT2−p2T3+p2T4 |
| 7 | C2 | (1+2T+pT2)2 |
| 11 | C2 | (1−3T+pT2)2 |
| 13 | C22 | 1+6T+23T2+6pT3+p2T4 |
| 17 | C22 | 1−6T+19T2−6pT3+p2T4 |
| 23 | C22 | 1+8T+41T2+8pT3+p2T4 |
| 29 | C22 | 1−7T+20T2−7pT3+p2T4 |
| 31 | C2 | (1−9T+pT2)2 |
| 37 | C2 | (1+2T+pT2)2 |
| 41 | C22 | 1−6T−5T2−6pT3+p2T4 |
| 43 | C22 | 1+10T+57T2+10pT3+p2T4 |
| 47 | C22 | 1−4T−31T2−4pT3+p2T4 |
| 53 | C22 | 1−14T+143T2−14pT3+p2T4 |
| 59 | C22 | 1−3T−50T2−3pT3+p2T4 |
| 61 | C22 | 1−7T−12T2−7pT3+p2T4 |
| 67 | C22 | 1+4T−51T2+4pT3+p2T4 |
| 71 | C22 | 1−7T−22T2−7pT3+p2T4 |
| 73 | C22 | 1+2T−69T2+2pT3+p2T4 |
| 79 | C22 | 1+5T−54T2+5pT3+p2T4 |
| 83 | C2 | (1−6T+pT2)2 |
| 89 | C22 | 1−3T−80T2−3pT3+p2T4 |
| 97 | C22 | 1−12T+47T2−12pT3+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.21702140489915585562847361904, −10.21429459004235498656816916133, −9.654284415219037582720301206542, −9.390251081839685706395585325617, −8.510665612064594147786901559654, −8.180833630540973111928522988921, −7.85639046269681270025750241220, −7.16421258992752142002467748583, −6.71686569055411375209606613324, −6.36809279174628169687719555083, −6.28299973055076573697172599269, −5.39677435190006361182924611538, −5.04283324769869745509954827452, −4.22206591085346042349226903022, −4.21509924737431123894137942729, −3.79106148424710745346216876567, −3.03081996372827882612646759374, −2.65123854997023272671893607167, −1.78497635569571174038079952676, −0.76184847244173038283792271090,
0.76184847244173038283792271090, 1.78497635569571174038079952676, 2.65123854997023272671893607167, 3.03081996372827882612646759374, 3.79106148424710745346216876567, 4.21509924737431123894137942729, 4.22206591085346042349226903022, 5.04283324769869745509954827452, 5.39677435190006361182924611538, 6.28299973055076573697172599269, 6.36809279174628169687719555083, 6.71686569055411375209606613324, 7.16421258992752142002467748583, 7.85639046269681270025750241220, 8.180833630540973111928522988921, 8.510665612064594147786901559654, 9.390251081839685706395585325617, 9.654284415219037582720301206542, 10.21429459004235498656816916133, 10.21702140489915585562847361904