L(s) = 1 | + 3·4-s − 2·5-s − 2·7-s − 6·11-s − 6·13-s + 5·16-s + 8·17-s − 2·19-s − 6·20-s − 8·23-s + 3·25-s − 6·28-s − 2·29-s + 12·31-s + 4·35-s + 2·37-s + 14·41-s + 6·43-s − 18·44-s − 8·47-s − 4·49-s − 18·52-s − 12·53-s + 12·55-s − 12·59-s − 12·61-s + 3·64-s + ⋯ |
L(s) = 1 | + 3/2·4-s − 0.894·5-s − 0.755·7-s − 1.80·11-s − 1.66·13-s + 5/4·16-s + 1.94·17-s − 0.458·19-s − 1.34·20-s − 1.66·23-s + 3/5·25-s − 1.13·28-s − 0.371·29-s + 2.15·31-s + 0.676·35-s + 0.328·37-s + 2.18·41-s + 0.914·43-s − 2.71·44-s − 1.16·47-s − 4/7·49-s − 2.49·52-s − 1.64·53-s + 1.61·55-s − 1.56·59-s − 1.53·61-s + 3/8·64-s + ⋯ |
Λ(s)=(=(731025s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(731025s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
731025
= 34⋅52⋅192
|
Sign: |
1
|
Analytic conductor: |
46.6107 |
Root analytic conductor: |
2.61289 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 731025, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
1.268930006 |
L(21) |
≈ |
1.268930006 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | | 1 |
| 5 | C1 | (1+T)2 |
| 19 | C1 | (1+T)2 |
good | 2 | C22 | 1−3T2+p2T4 |
| 7 | D4 | 1+2T+8T2+2pT3+p2T4 |
| 11 | D4 | 1+6T+24T2+6pT3+p2T4 |
| 13 | D4 | 1+6T+28T2+6pT3+p2T4 |
| 17 | C2 | (1−4T+pT2)2 |
| 23 | D4 | 1+8T+34T2+8pT3+p2T4 |
| 29 | D4 | 1+2T−4T2+2pT3+p2T4 |
| 31 | C2 | (1−6T+pT2)2 |
| 37 | D4 | 1−2T+68T2−2pT3+p2T4 |
| 41 | D4 | 1−14T+124T2−14pT3+p2T4 |
| 43 | D4 | 1−6T+88T2−6pT3+p2T4 |
| 47 | D4 | 1+8T+82T2+8pT3+p2T4 |
| 53 | D4 | 1+12T+114T2+12pT3+p2T4 |
| 59 | D4 | 1+12T+126T2+12pT3+p2T4 |
| 61 | D4 | 1+12T+130T2+12pT3+p2T4 |
| 67 | D4 | 1−8T+38T2−8pT3+p2T4 |
| 71 | D4 | 1+4T+118T2+4pT3+p2T4 |
| 73 | C2 | (1−10T+pT2)2 |
| 79 | D4 | 1+8T+62T2+8pT3+p2T4 |
| 83 | C2 | (1+6T+pT2)2 |
| 89 | D4 | 1−18T+196T2−18pT3+p2T4 |
| 97 | D4 | 1−10T+156T2−10pT3+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.67271511362287841677187630475, −10.02581513974420537155598790993, −9.579828267433626812097760759297, −9.516934784813309500688880154964, −8.419923197513881581540426457735, −7.80089205681565877940778521648, −7.80062728705847226041248418507, −7.71036418310382896784177414998, −7.11459669919728983154610827023, −6.29703094192450178260044183745, −6.27725230823798878770474023582, −5.71537394554387100462234331872, −5.05133025326034824774734512449, −4.64581092554730096159220447587, −4.02563579301204193992383587525, −3.08520710724224944364398989554, −2.98971781948011649321538550987, −2.50442802574960914334913958952, −1.79827696998905858967763090168, −0.50982924289492545929628281306,
0.50982924289492545929628281306, 1.79827696998905858967763090168, 2.50442802574960914334913958952, 2.98971781948011649321538550987, 3.08520710724224944364398989554, 4.02563579301204193992383587525, 4.64581092554730096159220447587, 5.05133025326034824774734512449, 5.71537394554387100462234331872, 6.27725230823798878770474023582, 6.29703094192450178260044183745, 7.11459669919728983154610827023, 7.71036418310382896784177414998, 7.80062728705847226041248418507, 7.80089205681565877940778521648, 8.419923197513881581540426457735, 9.516934784813309500688880154964, 9.579828267433626812097760759297, 10.02581513974420537155598790993, 10.67271511362287841677187630475