Properties

Label 4-855e2-1.1-c1e2-0-17
Degree $4$
Conductor $731025$
Sign $1$
Analytic cond. $46.6107$
Root an. cond. $2.61289$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·4-s − 5-s − 8·7-s − 6·11-s − 2·13-s + 6·17-s − 7·19-s − 2·20-s − 16·28-s − 3·29-s − 14·31-s + 8·35-s + 16·37-s − 6·41-s + 4·43-s − 12·44-s + 6·47-s + 34·49-s − 4·52-s − 6·53-s + 6·55-s − 15·59-s − 5·61-s − 8·64-s + 2·65-s − 2·67-s + 12·68-s + ⋯
L(s)  = 1  + 4-s − 0.447·5-s − 3.02·7-s − 1.80·11-s − 0.554·13-s + 1.45·17-s − 1.60·19-s − 0.447·20-s − 3.02·28-s − 0.557·29-s − 2.51·31-s + 1.35·35-s + 2.63·37-s − 0.937·41-s + 0.609·43-s − 1.80·44-s + 0.875·47-s + 34/7·49-s − 0.554·52-s − 0.824·53-s + 0.809·55-s − 1.95·59-s − 0.640·61-s − 64-s + 0.248·65-s − 0.244·67-s + 1.45·68-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 731025 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 731025 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(731025\)    =    \(3^{4} \cdot 5^{2} \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(46.6107\)
Root analytic conductor: \(2.61289\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 731025,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
5$C_2$ \( 1 + T + T^{2} \)
19$C_2$ \( 1 + 7 T + p T^{2} \)
good2$C_2^2$ \( 1 - p T^{2} + p^{2} T^{4} \)
7$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
11$C_2$ \( ( 1 + 3 T + p T^{2} )^{2} \)
13$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 7 T + p T^{2} ) \)
17$C_2^2$ \( 1 - 6 T + 19 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
23$C_2^2$ \( 1 - p T^{2} + p^{2} T^{4} \)
29$C_2^2$ \( 1 + 3 T - 20 T^{2} + 3 p T^{3} + p^{2} T^{4} \)
31$C_2$ \( ( 1 + 7 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
41$C_2^2$ \( 1 + 6 T - 5 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
43$C_2^2$ \( 1 - 4 T - 27 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
47$C_2^2$ \( 1 - 6 T - 11 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
53$C_2^2$ \( 1 + 6 T - 17 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
59$C_2^2$ \( 1 + 15 T + 166 T^{2} + 15 p T^{3} + p^{2} T^{4} \)
61$C_2^2$ \( 1 + 5 T - 36 T^{2} + 5 p T^{3} + p^{2} T^{4} \)
67$C_2^2$ \( 1 + 2 T - 63 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
71$C_2^2$ \( 1 + 3 T - 62 T^{2} + 3 p T^{3} + p^{2} T^{4} \)
73$C_2^2$ \( 1 + 8 T - 9 T^{2} + 8 p T^{3} + p^{2} T^{4} \)
79$C_2^2$ \( 1 + 5 T - 54 T^{2} + 5 p T^{3} + p^{2} T^{4} \)
83$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
89$C_2^2$ \( 1 + 15 T + 136 T^{2} + 15 p T^{3} + p^{2} T^{4} \)
97$C_2^2$ \( 1 + 8 T - 33 T^{2} + 8 p T^{3} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.850530987711527256674952408026, −9.785501073806385524056213412322, −9.072292990423787685858194721242, −9.037732842181625587261620891294, −7.899332607614189981339704991996, −7.88682278198065847964142894844, −7.32401323469590469361745876697, −6.97271323239509172320534047471, −6.55010406227323394050438693908, −6.07952880579286187774227883498, −5.58331007864135834733462007136, −5.51980529134237890805706407274, −4.18387938804896131922298628918, −4.17893331521981998392333728543, −3.05477246548069317452286738383, −3.01920831431247113420676509838, −2.66935415676807917451504337439, −1.77095464773124816393736803881, 0, 0, 1.77095464773124816393736803881, 2.66935415676807917451504337439, 3.01920831431247113420676509838, 3.05477246548069317452286738383, 4.17893331521981998392333728543, 4.18387938804896131922298628918, 5.51980529134237890805706407274, 5.58331007864135834733462007136, 6.07952880579286187774227883498, 6.55010406227323394050438693908, 6.97271323239509172320534047471, 7.32401323469590469361745876697, 7.88682278198065847964142894844, 7.899332607614189981339704991996, 9.037732842181625587261620891294, 9.072292990423787685858194721242, 9.785501073806385524056213412322, 9.850530987711527256674952408026

Graph of the $Z$-function along the critical line