L(s) = 1 | + 2·4-s − 5-s − 8·7-s − 6·11-s − 2·13-s + 6·17-s − 7·19-s − 2·20-s − 16·28-s − 3·29-s − 14·31-s + 8·35-s + 16·37-s − 6·41-s + 4·43-s − 12·44-s + 6·47-s + 34·49-s − 4·52-s − 6·53-s + 6·55-s − 15·59-s − 5·61-s − 8·64-s + 2·65-s − 2·67-s + 12·68-s + ⋯ |
L(s) = 1 | + 4-s − 0.447·5-s − 3.02·7-s − 1.80·11-s − 0.554·13-s + 1.45·17-s − 1.60·19-s − 0.447·20-s − 3.02·28-s − 0.557·29-s − 2.51·31-s + 1.35·35-s + 2.63·37-s − 0.937·41-s + 0.609·43-s − 1.80·44-s + 0.875·47-s + 34/7·49-s − 0.554·52-s − 0.824·53-s + 0.809·55-s − 1.95·59-s − 0.640·61-s − 64-s + 0.248·65-s − 0.244·67-s + 1.45·68-s + ⋯ |
Λ(s)=(=(731025s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(731025s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
731025
= 34⋅52⋅192
|
Sign: |
1
|
Analytic conductor: |
46.6107 |
Root analytic conductor: |
2.61289 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
2
|
Selberg data: |
(4, 731025, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | | 1 |
| 5 | C2 | 1+T+T2 |
| 19 | C2 | 1+7T+pT2 |
good | 2 | C22 | 1−pT2+p2T4 |
| 7 | C2 | (1+4T+pT2)2 |
| 11 | C2 | (1+3T+pT2)2 |
| 13 | C2 | (1−5T+pT2)(1+7T+pT2) |
| 17 | C22 | 1−6T+19T2−6pT3+p2T4 |
| 23 | C22 | 1−pT2+p2T4 |
| 29 | C22 | 1+3T−20T2+3pT3+p2T4 |
| 31 | C2 | (1+7T+pT2)2 |
| 37 | C2 | (1−8T+pT2)2 |
| 41 | C22 | 1+6T−5T2+6pT3+p2T4 |
| 43 | C22 | 1−4T−27T2−4pT3+p2T4 |
| 47 | C22 | 1−6T−11T2−6pT3+p2T4 |
| 53 | C22 | 1+6T−17T2+6pT3+p2T4 |
| 59 | C22 | 1+15T+166T2+15pT3+p2T4 |
| 61 | C22 | 1+5T−36T2+5pT3+p2T4 |
| 67 | C22 | 1+2T−63T2+2pT3+p2T4 |
| 71 | C22 | 1+3T−62T2+3pT3+p2T4 |
| 73 | C22 | 1+8T−9T2+8pT3+p2T4 |
| 79 | C22 | 1+5T−54T2+5pT3+p2T4 |
| 83 | C2 | (1+12T+pT2)2 |
| 89 | C22 | 1+15T+136T2+15pT3+p2T4 |
| 97 | C22 | 1+8T−33T2+8pT3+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.850530987711527256674952408026, −9.785501073806385524056213412322, −9.072292990423787685858194721242, −9.037732842181625587261620891294, −7.899332607614189981339704991996, −7.88682278198065847964142894844, −7.32401323469590469361745876697, −6.97271323239509172320534047471, −6.55010406227323394050438693908, −6.07952880579286187774227883498, −5.58331007864135834733462007136, −5.51980529134237890805706407274, −4.18387938804896131922298628918, −4.17893331521981998392333728543, −3.05477246548069317452286738383, −3.01920831431247113420676509838, −2.66935415676807917451504337439, −1.77095464773124816393736803881, 0, 0,
1.77095464773124816393736803881, 2.66935415676807917451504337439, 3.01920831431247113420676509838, 3.05477246548069317452286738383, 4.17893331521981998392333728543, 4.18387938804896131922298628918, 5.51980529134237890805706407274, 5.58331007864135834733462007136, 6.07952880579286187774227883498, 6.55010406227323394050438693908, 6.97271323239509172320534047471, 7.32401323469590469361745876697, 7.88682278198065847964142894844, 7.899332607614189981339704991996, 9.037732842181625587261620891294, 9.072292990423787685858194721242, 9.785501073806385524056213412322, 9.850530987711527256674952408026