L(s) = 1 | − 2·2-s + 4-s + 2·5-s − 4·10-s − 4·11-s − 4·13-s + 16-s − 8·17-s − 2·19-s + 2·20-s + 8·22-s − 4·23-s + 3·25-s + 8·26-s − 12·31-s + 2·32-s + 16·34-s − 4·37-s + 4·38-s − 8·41-s + 16·43-s − 4·44-s + 8·46-s + 4·47-s − 12·49-s − 6·50-s − 4·52-s + ⋯ |
L(s) = 1 | − 1.41·2-s + 1/2·4-s + 0.894·5-s − 1.26·10-s − 1.20·11-s − 1.10·13-s + 1/4·16-s − 1.94·17-s − 0.458·19-s + 0.447·20-s + 1.70·22-s − 0.834·23-s + 3/5·25-s + 1.56·26-s − 2.15·31-s + 0.353·32-s + 2.74·34-s − 0.657·37-s + 0.648·38-s − 1.24·41-s + 2.43·43-s − 0.603·44-s + 1.17·46-s + 0.583·47-s − 1.71·49-s − 0.848·50-s − 0.554·52-s + ⋯ |
Λ(s)=(=(731025s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(731025s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
731025
= 34⋅52⋅192
|
Sign: |
1
|
Analytic conductor: |
46.6107 |
Root analytic conductor: |
2.61289 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
2
|
Selberg data: |
(4, 731025, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | | 1 |
| 5 | C1 | (1−T)2 |
| 19 | C1 | (1+T)2 |
good | 2 | D4 | 1+pT+3T2+p2T3+p2T4 |
| 7 | C22 | 1+12T2+p2T4 |
| 11 | C22 | 1+4T+8T2+4pT3+p2T4 |
| 13 | D4 | 1+4T+28T2+4pT3+p2T4 |
| 17 | D4 | 1+8T+42T2+8pT3+p2T4 |
| 23 | D4 | 1+4T+18T2+4pT3+p2T4 |
| 29 | C22 | 1+56T2+p2T4 |
| 31 | D4 | 1+12T+90T2+12pT3+p2T4 |
| 37 | D4 | 1+4T+76T2+4pT3+p2T4 |
| 41 | D4 | 1+8T+80T2+8pT3+p2T4 |
| 43 | D4 | 1−16T+132T2−16pT3+p2T4 |
| 47 | D4 | 1−4T+66T2−4pT3+p2T4 |
| 53 | C2 | (1+8T+pT2)2 |
| 59 | D4 | 1+8T+62T2+8pT3+p2T4 |
| 61 | D4 | 1+8T+10T2+8pT3+p2T4 |
| 67 | D4 | 1+8T+118T2+8pT3+p2T4 |
| 71 | D4 | 1−16T+198T2−16pT3+p2T4 |
| 73 | D4 | 1+4T+118T2+4pT3+p2T4 |
| 79 | C2 | (1+pT2)2 |
| 83 | D4 | 1+20T+258T2+20pT3+p2T4 |
| 89 | D4 | 1−8T+96T2−8pT3+p2T4 |
| 97 | D4 | 1+28T+372T2+28pT3+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.722745648379049918646211507621, −9.514531458906954383141396676411, −9.227281111221382192476111583475, −8.866871035962801030941946926719, −8.214413845173848281060607772219, −8.187536557251497965678579957603, −7.37133136499828317476175292112, −7.25258869154653640498590323148, −6.59797370219109302594742518380, −6.04254267696844185646324438513, −5.76376858388568670659294503497, −5.03561476211193453184203592506, −4.69800476778969242459409458966, −4.19892764820537397559298863593, −3.24134624149838719801586204400, −2.66266741777911759740479304679, −2.06707568249052481512345127651, −1.65084733236590813945970926393, 0, 0,
1.65084733236590813945970926393, 2.06707568249052481512345127651, 2.66266741777911759740479304679, 3.24134624149838719801586204400, 4.19892764820537397559298863593, 4.69800476778969242459409458966, 5.03561476211193453184203592506, 5.76376858388568670659294503497, 6.04254267696844185646324438513, 6.59797370219109302594742518380, 7.25258869154653640498590323148, 7.37133136499828317476175292112, 8.187536557251497965678579957603, 8.214413845173848281060607772219, 8.866871035962801030941946926719, 9.227281111221382192476111583475, 9.514531458906954383141396676411, 9.722745648379049918646211507621