| L(s) = 1 | − 2·2-s + 4-s + 2·5-s − 4·10-s − 4·11-s − 4·13-s + 16-s − 8·17-s − 2·19-s + 2·20-s + 8·22-s − 4·23-s + 3·25-s + 8·26-s − 12·31-s + 2·32-s + 16·34-s − 4·37-s + 4·38-s − 8·41-s + 16·43-s − 4·44-s + 8·46-s + 4·47-s − 12·49-s − 6·50-s − 4·52-s + ⋯ |
| L(s) = 1 | − 1.41·2-s + 1/2·4-s + 0.894·5-s − 1.26·10-s − 1.20·11-s − 1.10·13-s + 1/4·16-s − 1.94·17-s − 0.458·19-s + 0.447·20-s + 1.70·22-s − 0.834·23-s + 3/5·25-s + 1.56·26-s − 2.15·31-s + 0.353·32-s + 2.74·34-s − 0.657·37-s + 0.648·38-s − 1.24·41-s + 2.43·43-s − 0.603·44-s + 1.17·46-s + 0.583·47-s − 1.71·49-s − 0.848·50-s − 0.554·52-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 731025 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 731025 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(=\) |
\(0\) |
| \(L(\frac12)\) |
\(=\) |
\(0\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.722745648379049918646211507621, −9.514531458906954383141396676411, −9.227281111221382192476111583475, −8.866871035962801030941946926719, −8.214413845173848281060607772219, −8.187536557251497965678579957603, −7.37133136499828317476175292112, −7.25258869154653640498590323148, −6.59797370219109302594742518380, −6.04254267696844185646324438513, −5.76376858388568670659294503497, −5.03561476211193453184203592506, −4.69800476778969242459409458966, −4.19892764820537397559298863593, −3.24134624149838719801586204400, −2.66266741777911759740479304679, −2.06707568249052481512345127651, −1.65084733236590813945970926393, 0, 0,
1.65084733236590813945970926393, 2.06707568249052481512345127651, 2.66266741777911759740479304679, 3.24134624149838719801586204400, 4.19892764820537397559298863593, 4.69800476778969242459409458966, 5.03561476211193453184203592506, 5.76376858388568670659294503497, 6.04254267696844185646324438513, 6.59797370219109302594742518380, 7.25258869154653640498590323148, 7.37133136499828317476175292112, 8.187536557251497965678579957603, 8.214413845173848281060607772219, 8.866871035962801030941946926719, 9.227281111221382192476111583475, 9.514531458906954383141396676411, 9.722745648379049918646211507621