Properties

Label 4-855e2-1.1-c1e2-0-15
Degree $4$
Conductor $731025$
Sign $1$
Analytic cond. $46.6107$
Root an. cond. $2.61289$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4-s − 2·5-s − 2·7-s − 6·11-s − 2·13-s − 3·16-s + 2·19-s + 2·20-s + 3·25-s + 2·28-s − 6·29-s + 4·31-s + 4·35-s − 2·37-s − 6·41-s − 2·43-s + 6·44-s − 8·49-s + 2·52-s + 12·53-s + 12·55-s − 12·59-s − 20·61-s + 7·64-s + 4·65-s + 16·67-s − 12·71-s + ⋯
L(s)  = 1  − 1/2·4-s − 0.894·5-s − 0.755·7-s − 1.80·11-s − 0.554·13-s − 3/4·16-s + 0.458·19-s + 0.447·20-s + 3/5·25-s + 0.377·28-s − 1.11·29-s + 0.718·31-s + 0.676·35-s − 0.328·37-s − 0.937·41-s − 0.304·43-s + 0.904·44-s − 8/7·49-s + 0.277·52-s + 1.64·53-s + 1.61·55-s − 1.56·59-s − 2.56·61-s + 7/8·64-s + 0.496·65-s + 1.95·67-s − 1.42·71-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 731025 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 731025 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(731025\)    =    \(3^{4} \cdot 5^{2} \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(46.6107\)
Root analytic conductor: \(2.61289\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 731025,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
5$C_1$ \( ( 1 + T )^{2} \)
19$C_1$ \( ( 1 - T )^{2} \)
good2$C_2^2$ \( 1 + T^{2} + p^{2} T^{4} \)
7$D_{4}$ \( 1 + 2 T + 12 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
11$D_{4}$ \( 1 + 6 T + 28 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
13$D_{4}$ \( 1 + 2 T + 24 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
17$C_2$ \( ( 1 + p T^{2} )^{2} \)
23$C_2^2$ \( 1 + 34 T^{2} + p^{2} T^{4} \)
29$D_{4}$ \( 1 + 6 T + 40 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
31$D_{4}$ \( 1 - 4 T + 18 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
37$D_{4}$ \( 1 + 2 T + 48 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
41$D_{4}$ \( 1 + 6 T + 88 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
43$D_{4}$ \( 1 + 2 T + 60 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
47$C_2^2$ \( 1 + 82 T^{2} + p^{2} T^{4} \)
53$D_{4}$ \( 1 - 12 T + 130 T^{2} - 12 p T^{3} + p^{2} T^{4} \)
59$D_{4}$ \( 1 + 12 T + 142 T^{2} + 12 p T^{3} + p^{2} T^{4} \)
61$D_{4}$ \( 1 + 20 T + 210 T^{2} + 20 p T^{3} + p^{2} T^{4} \)
67$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
71$D_{4}$ \( 1 + 12 T + 70 T^{2} + 12 p T^{3} + p^{2} T^{4} \)
73$D_{4}$ \( 1 + 20 T + 198 T^{2} + 20 p T^{3} + p^{2} T^{4} \)
79$D_{4}$ \( 1 + 8 T + 126 T^{2} + 8 p T^{3} + p^{2} T^{4} \)
83$D_{4}$ \( 1 - 12 T + 154 T^{2} - 12 p T^{3} + p^{2} T^{4} \)
89$D_{4}$ \( 1 + 18 T + 256 T^{2} + 18 p T^{3} + p^{2} T^{4} \)
97$D_{4}$ \( 1 + 2 T + 168 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.883189261924100285367699278865, −9.662192409485576623441819539167, −8.940822958268431086479763387500, −8.918811508542577170579471553856, −8.081630085440141152762217752635, −7.925284616352481666971539413070, −7.51962887526028270450858107400, −6.96919026304098461403641387292, −6.68577435659982868662434597231, −5.98955303734139928413255293136, −5.31448895197748011351559390899, −5.22356174996129912622679127077, −4.42657179225334757009567689386, −4.26098337197706662680269410074, −3.38757928029076444734609280301, −2.97400430415512322974018382064, −2.55116332079524321306653284472, −1.55618517111585788553635139092, 0, 0, 1.55618517111585788553635139092, 2.55116332079524321306653284472, 2.97400430415512322974018382064, 3.38757928029076444734609280301, 4.26098337197706662680269410074, 4.42657179225334757009567689386, 5.22356174996129912622679127077, 5.31448895197748011351559390899, 5.98955303734139928413255293136, 6.68577435659982868662434597231, 6.96919026304098461403641387292, 7.51962887526028270450858107400, 7.925284616352481666971539413070, 8.081630085440141152762217752635, 8.918811508542577170579471553856, 8.940822958268431086479763387500, 9.662192409485576623441819539167, 9.883189261924100285367699278865

Graph of the $Z$-function along the critical line