L(s) = 1 | − 4-s − 2·5-s − 2·7-s − 6·11-s − 2·13-s − 3·16-s + 2·19-s + 2·20-s + 3·25-s + 2·28-s − 6·29-s + 4·31-s + 4·35-s − 2·37-s − 6·41-s − 2·43-s + 6·44-s − 8·49-s + 2·52-s + 12·53-s + 12·55-s − 12·59-s − 20·61-s + 7·64-s + 4·65-s + 16·67-s − 12·71-s + ⋯ |
L(s) = 1 | − 1/2·4-s − 0.894·5-s − 0.755·7-s − 1.80·11-s − 0.554·13-s − 3/4·16-s + 0.458·19-s + 0.447·20-s + 3/5·25-s + 0.377·28-s − 1.11·29-s + 0.718·31-s + 0.676·35-s − 0.328·37-s − 0.937·41-s − 0.304·43-s + 0.904·44-s − 8/7·49-s + 0.277·52-s + 1.64·53-s + 1.61·55-s − 1.56·59-s − 2.56·61-s + 7/8·64-s + 0.496·65-s + 1.95·67-s − 1.42·71-s + ⋯ |
Λ(s)=(=(731025s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(731025s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
731025
= 34⋅52⋅192
|
Sign: |
1
|
Analytic conductor: |
46.6107 |
Root analytic conductor: |
2.61289 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
2
|
Selberg data: |
(4, 731025, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | | 1 |
| 5 | C1 | (1+T)2 |
| 19 | C1 | (1−T)2 |
good | 2 | C22 | 1+T2+p2T4 |
| 7 | D4 | 1+2T+12T2+2pT3+p2T4 |
| 11 | D4 | 1+6T+28T2+6pT3+p2T4 |
| 13 | D4 | 1+2T+24T2+2pT3+p2T4 |
| 17 | C2 | (1+pT2)2 |
| 23 | C22 | 1+34T2+p2T4 |
| 29 | D4 | 1+6T+40T2+6pT3+p2T4 |
| 31 | D4 | 1−4T+18T2−4pT3+p2T4 |
| 37 | D4 | 1+2T+48T2+2pT3+p2T4 |
| 41 | D4 | 1+6T+88T2+6pT3+p2T4 |
| 43 | D4 | 1+2T+60T2+2pT3+p2T4 |
| 47 | C22 | 1+82T2+p2T4 |
| 53 | D4 | 1−12T+130T2−12pT3+p2T4 |
| 59 | D4 | 1+12T+142T2+12pT3+p2T4 |
| 61 | D4 | 1+20T+210T2+20pT3+p2T4 |
| 67 | C2 | (1−8T+pT2)2 |
| 71 | D4 | 1+12T+70T2+12pT3+p2T4 |
| 73 | D4 | 1+20T+198T2+20pT3+p2T4 |
| 79 | D4 | 1+8T+126T2+8pT3+p2T4 |
| 83 | D4 | 1−12T+154T2−12pT3+p2T4 |
| 89 | D4 | 1+18T+256T2+18pT3+p2T4 |
| 97 | D4 | 1+2T+168T2+2pT3+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.883189261924100285367699278865, −9.662192409485576623441819539167, −8.940822958268431086479763387500, −8.918811508542577170579471553856, −8.081630085440141152762217752635, −7.925284616352481666971539413070, −7.51962887526028270450858107400, −6.96919026304098461403641387292, −6.68577435659982868662434597231, −5.98955303734139928413255293136, −5.31448895197748011351559390899, −5.22356174996129912622679127077, −4.42657179225334757009567689386, −4.26098337197706662680269410074, −3.38757928029076444734609280301, −2.97400430415512322974018382064, −2.55116332079524321306653284472, −1.55618517111585788553635139092, 0, 0,
1.55618517111585788553635139092, 2.55116332079524321306653284472, 2.97400430415512322974018382064, 3.38757928029076444734609280301, 4.26098337197706662680269410074, 4.42657179225334757009567689386, 5.22356174996129912622679127077, 5.31448895197748011351559390899, 5.98955303734139928413255293136, 6.68577435659982868662434597231, 6.96919026304098461403641387292, 7.51962887526028270450858107400, 7.925284616352481666971539413070, 8.081630085440141152762217752635, 8.918811508542577170579471553856, 8.940822958268431086479763387500, 9.662192409485576623441819539167, 9.883189261924100285367699278865