Properties

Label 4-855e2-1.1-c1e2-0-13
Degree $4$
Conductor $731025$
Sign $-1$
Analytic cond. $46.6107$
Root an. cond. $2.61289$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·4-s + 10·13-s − 19-s + 25-s + 3·31-s − 12·37-s − 10·43-s − 10·49-s − 20·52-s + 2·61-s + 8·64-s + 4·67-s − 8·73-s + 2·76-s + 2·79-s − 22·97-s − 2·100-s − 36·103-s − 7·109-s − 9·121-s − 6·124-s + 127-s + 131-s + 137-s + 139-s + 24·148-s + 149-s + ⋯
L(s)  = 1  − 4-s + 2.77·13-s − 0.229·19-s + 1/5·25-s + 0.538·31-s − 1.97·37-s − 1.52·43-s − 1.42·49-s − 2.77·52-s + 0.256·61-s + 64-s + 0.488·67-s − 0.936·73-s + 0.229·76-s + 0.225·79-s − 2.23·97-s − 1/5·100-s − 3.54·103-s − 0.670·109-s − 0.818·121-s − 0.538·124-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 1.97·148-s + 0.0819·149-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 731025 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 731025 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(731025\)    =    \(3^{4} \cdot 5^{2} \cdot 19^{2}\)
Sign: $-1$
Analytic conductor: \(46.6107\)
Root analytic conductor: \(2.61289\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 731025,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
5$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
19$C_2$ \( 1 + T + p T^{2} \)
good2$C_2^2$ \( 1 + p T^{2} + p^{2} T^{4} \)
7$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
11$C_2^2$ \( 1 + 9 T^{2} + p^{2} T^{4} \)
13$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 - 4 T + p T^{2} ) \)
17$C_2^2$ \( 1 + 19 T^{2} + p^{2} T^{4} \)
23$C_2^2$ \( 1 - 14 T^{2} + p^{2} T^{4} \)
29$C_2$ \( ( 1 - 9 T + p T^{2} )( 1 + 9 T + p T^{2} ) \)
31$C_2$$\times$$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + p T^{2} ) \)
37$C_2$$\times$$C_2$ \( ( 1 + 4 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
41$C_2^2$ \( 1 + 10 T^{2} + p^{2} T^{4} \)
43$C_2$$\times$$C_2$ \( ( 1 + 4 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
47$C_2^2$ \( 1 - 71 T^{2} + p^{2} T^{4} \)
53$C_2^2$ \( 1 + 19 T^{2} + p^{2} T^{4} \)
59$C_2^2$ \( 1 + 61 T^{2} + p^{2} T^{4} \)
61$C_2$$\times$$C_2$ \( ( 1 - 13 T + p T^{2} )( 1 + 11 T + p T^{2} ) \)
67$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
71$C_2^2$ \( 1 + T^{2} + p^{2} T^{4} \)
73$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 16 T + p T^{2} ) \)
79$C_2$ \( ( 1 - T + p T^{2} )^{2} \)
83$C_2^2$ \( 1 + 93 T^{2} + p^{2} T^{4} \)
89$C_2$ \( ( 1 - 9 T + p T^{2} )( 1 + 9 T + p T^{2} ) \)
97$C_2$$\times$$C_2$ \( ( 1 + 4 T + p T^{2} )( 1 + 18 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.270731226826548888974275331436, −7.979861869097349205620026627173, −6.87244029092208968082688570656, −6.80574947248602853190266223077, −6.35450331544968665653471087535, −5.65924042232185999500062358436, −5.41049972917035471336152487853, −4.77929711168029645016524439593, −4.28187877298872610960741606633, −3.71984530305062655813366610869, −3.48894881547595653665387029712, −2.76768644633230574350606151134, −1.67643204003326032024474779265, −1.23589929378979944378282330870, 0, 1.23589929378979944378282330870, 1.67643204003326032024474779265, 2.76768644633230574350606151134, 3.48894881547595653665387029712, 3.71984530305062655813366610869, 4.28187877298872610960741606633, 4.77929711168029645016524439593, 5.41049972917035471336152487853, 5.65924042232185999500062358436, 6.35450331544968665653471087535, 6.80574947248602853190266223077, 6.87244029092208968082688570656, 7.979861869097349205620026627173, 8.270731226826548888974275331436

Graph of the $Z$-function along the critical line