L(s) = 1 | − 2·4-s + 10·13-s − 19-s + 25-s + 3·31-s − 12·37-s − 10·43-s − 10·49-s − 20·52-s + 2·61-s + 8·64-s + 4·67-s − 8·73-s + 2·76-s + 2·79-s − 22·97-s − 2·100-s − 36·103-s − 7·109-s − 9·121-s − 6·124-s + 127-s + 131-s + 137-s + 139-s + 24·148-s + 149-s + ⋯ |
L(s) = 1 | − 4-s + 2.77·13-s − 0.229·19-s + 1/5·25-s + 0.538·31-s − 1.97·37-s − 1.52·43-s − 1.42·49-s − 2.77·52-s + 0.256·61-s + 64-s + 0.488·67-s − 0.936·73-s + 0.229·76-s + 0.225·79-s − 2.23·97-s − 1/5·100-s − 3.54·103-s − 0.670·109-s − 0.818·121-s − 0.538·124-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 1.97·148-s + 0.0819·149-s + ⋯ |
Λ(s)=(=(731025s/2ΓC(s)2L(s)−Λ(2−s)
Λ(s)=(=(731025s/2ΓC(s+1/2)2L(s)−Λ(1−s)
Degree: |
4 |
Conductor: |
731025
= 34⋅52⋅192
|
Sign: |
−1
|
Analytic conductor: |
46.6107 |
Root analytic conductor: |
2.61289 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
1
|
Selberg data: |
(4, 731025, ( :1/2,1/2), −1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | | 1 |
| 5 | C1×C1 | (1−T)(1+T) |
| 19 | C2 | 1+T+pT2 |
good | 2 | C22 | 1+pT2+p2T4 |
| 7 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 11 | C22 | 1+9T2+p2T4 |
| 13 | C2 | (1−6T+pT2)(1−4T+pT2) |
| 17 | C22 | 1+19T2+p2T4 |
| 23 | C22 | 1−14T2+p2T4 |
| 29 | C2 | (1−9T+pT2)(1+9T+pT2) |
| 31 | C2×C2 | (1−3T+pT2)(1+pT2) |
| 37 | C2×C2 | (1+4T+pT2)(1+8T+pT2) |
| 41 | C22 | 1+10T2+p2T4 |
| 43 | C2×C2 | (1+4T+pT2)(1+6T+pT2) |
| 47 | C22 | 1−71T2+p2T4 |
| 53 | C22 | 1+19T2+p2T4 |
| 59 | C22 | 1+61T2+p2T4 |
| 61 | C2×C2 | (1−13T+pT2)(1+11T+pT2) |
| 67 | C2×C2 | (1−6T+pT2)(1+2T+pT2) |
| 71 | C22 | 1+T2+p2T4 |
| 73 | C2×C2 | (1−8T+pT2)(1+16T+pT2) |
| 79 | C2 | (1−T+pT2)2 |
| 83 | C22 | 1+93T2+p2T4 |
| 89 | C2 | (1−9T+pT2)(1+9T+pT2) |
| 97 | C2×C2 | (1+4T+pT2)(1+18T+pT2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.270731226826548888974275331436, −7.979861869097349205620026627173, −6.87244029092208968082688570656, −6.80574947248602853190266223077, −6.35450331544968665653471087535, −5.65924042232185999500062358436, −5.41049972917035471336152487853, −4.77929711168029645016524439593, −4.28187877298872610960741606633, −3.71984530305062655813366610869, −3.48894881547595653665387029712, −2.76768644633230574350606151134, −1.67643204003326032024474779265, −1.23589929378979944378282330870, 0,
1.23589929378979944378282330870, 1.67643204003326032024474779265, 2.76768644633230574350606151134, 3.48894881547595653665387029712, 3.71984530305062655813366610869, 4.28187877298872610960741606633, 4.77929711168029645016524439593, 5.41049972917035471336152487853, 5.65924042232185999500062358436, 6.35450331544968665653471087535, 6.80574947248602853190266223077, 6.87244029092208968082688570656, 7.979861869097349205620026627173, 8.270731226826548888974275331436