L(s) = 1 | + 2·4-s + 5-s + 4·7-s + 6·11-s + 4·13-s − 7·19-s + 2·20-s − 6·23-s + 8·28-s + 3·29-s + 10·31-s + 4·35-s + 16·37-s − 6·41-s + 4·43-s + 12·44-s + 6·47-s − 2·49-s + 8·52-s − 6·53-s + 6·55-s − 9·59-s + 7·61-s − 8·64-s + 4·65-s − 2·67-s − 9·71-s + ⋯ |
L(s) = 1 | + 4-s + 0.447·5-s + 1.51·7-s + 1.80·11-s + 1.10·13-s − 1.60·19-s + 0.447·20-s − 1.25·23-s + 1.51·28-s + 0.557·29-s + 1.79·31-s + 0.676·35-s + 2.63·37-s − 0.937·41-s + 0.609·43-s + 1.80·44-s + 0.875·47-s − 2/7·49-s + 1.10·52-s − 0.824·53-s + 0.809·55-s − 1.17·59-s + 0.896·61-s − 64-s + 0.496·65-s − 0.244·67-s − 1.06·71-s + ⋯ |
Λ(s)=(=(731025s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(731025s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
731025
= 34⋅52⋅192
|
Sign: |
1
|
Analytic conductor: |
46.6107 |
Root analytic conductor: |
2.61289 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 731025, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
4.269968890 |
L(21) |
≈ |
4.269968890 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | | 1 |
| 5 | C2 | 1−T+T2 |
| 19 | C2 | 1+7T+pT2 |
good | 2 | C22 | 1−pT2+p2T4 |
| 7 | C2 | (1−2T+pT2)2 |
| 11 | C2 | (1−3T+pT2)2 |
| 13 | C22 | 1−4T+3T2−4pT3+p2T4 |
| 17 | C22 | 1−pT2+p2T4 |
| 23 | C22 | 1+6T+13T2+6pT3+p2T4 |
| 29 | C22 | 1−3T−20T2−3pT3+p2T4 |
| 31 | C2 | (1−5T+pT2)2 |
| 37 | C2 | (1−8T+pT2)2 |
| 41 | C22 | 1+6T−5T2+6pT3+p2T4 |
| 43 | C22 | 1−4T−27T2−4pT3+p2T4 |
| 47 | C22 | 1−6T−11T2−6pT3+p2T4 |
| 53 | C22 | 1+6T−17T2+6pT3+p2T4 |
| 59 | C22 | 1+9T+22T2+9pT3+p2T4 |
| 61 | C22 | 1−7T−12T2−7pT3+p2T4 |
| 67 | C22 | 1+2T−63T2+2pT3+p2T4 |
| 71 | C22 | 1+9T+10T2+9pT3+p2T4 |
| 73 | C22 | 1−4T−57T2−4pT3+p2T4 |
| 79 | C22 | 1−7T−30T2−7pT3+p2T4 |
| 83 | C2 | (1+pT2)2 |
| 89 | C22 | 1−3T−80T2−3pT3+p2T4 |
| 97 | C22 | 1−10T+3T2−10pT3+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.37802296429431719248202563402, −10.16143255715236096694498936611, −9.463538113949743957476755824073, −9.130161875272418961155897558854, −8.592302065686632975588167916371, −8.323181365297273262509568131784, −7.84503221359509373921561065675, −7.55507865849627031912550530546, −6.70377090797413947112980043411, −6.36209800037672362467075038845, −6.20669072455171087582507040555, −5.94818136233015567114212422462, −4.86305315376714423181502804439, −4.59648242966108528162028824072, −4.09549348528459852481621896174, −3.66166160214414539189139822770, −2.63261284754577781174387588484, −2.26097898184724496658355889148, −1.51536073064056676997525217643, −1.19796066188443671074681822521,
1.19796066188443671074681822521, 1.51536073064056676997525217643, 2.26097898184724496658355889148, 2.63261284754577781174387588484, 3.66166160214414539189139822770, 4.09549348528459852481621896174, 4.59648242966108528162028824072, 4.86305315376714423181502804439, 5.94818136233015567114212422462, 6.20669072455171087582507040555, 6.36209800037672362467075038845, 6.70377090797413947112980043411, 7.55507865849627031912550530546, 7.84503221359509373921561065675, 8.323181365297273262509568131784, 8.592302065686632975588167916371, 9.130161875272418961155897558854, 9.463538113949743957476755824073, 10.16143255715236096694498936611, 10.37802296429431719248202563402