L(s) = 1 | + 4-s − 8·13-s − 3·16-s + 4·19-s − 25-s + 8·37-s + 8·43-s + 2·49-s − 8·52-s + 4·61-s − 7·64-s − 16·67-s + 4·73-s + 4·76-s − 8·97-s − 100-s − 32·109-s + 6·121-s + 127-s + 131-s + 137-s + 139-s + 8·148-s + 149-s + 151-s + 157-s + 163-s + ⋯ |
L(s) = 1 | + 1/2·4-s − 2.21·13-s − 3/4·16-s + 0.917·19-s − 1/5·25-s + 1.31·37-s + 1.21·43-s + 2/7·49-s − 1.10·52-s + 0.512·61-s − 7/8·64-s − 1.95·67-s + 0.468·73-s + 0.458·76-s − 0.812·97-s − 0.0999·100-s − 3.06·109-s + 6/11·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.657·148-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + ⋯ |
Λ(s)=(=(731025s/2ΓC(s)2L(s)−Λ(2−s)
Λ(s)=(=(731025s/2ΓC(s+1/2)2L(s)−Λ(1−s)
Degree: |
4 |
Conductor: |
731025
= 34⋅52⋅192
|
Sign: |
−1
|
Analytic conductor: |
46.6107 |
Root analytic conductor: |
2.61289 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
1
|
Selberg data: |
(4, 731025, ( :1/2,1/2), −1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | | 1 |
| 5 | C2 | 1+T2 |
| 19 | C2 | 1−4T+pT2 |
good | 2 | C22 | 1−T2+p2T4 |
| 7 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 11 | C22 | 1−6T2+p2T4 |
| 13 | C2×C2 | (1+2T+pT2)(1+6T+pT2) |
| 17 | C22 | 1+2T2+p2T4 |
| 23 | C22 | 1+2T2+p2T4 |
| 29 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 31 | C2 | (1+pT2)2 |
| 37 | C2×C2 | (1−10T+pT2)(1+2T+pT2) |
| 41 | C22 | 1−50T2+p2T4 |
| 43 | C2×C2 | (1−8T+pT2)(1+pT2) |
| 47 | C22 | 1−46T2+p2T4 |
| 53 | C22 | 1−74T2+p2T4 |
| 59 | C2 | (1−12T+pT2)(1+12T+pT2) |
| 61 | C2 | (1−2T+pT2)2 |
| 67 | C2×C2 | (1+pT2)(1+16T+pT2) |
| 71 | C22 | 1−50T2+p2T4 |
| 73 | C2 | (1−2T+pT2)2 |
| 79 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 83 | C22 | 1+90T2+p2T4 |
| 89 | C22 | 1+46T2+p2T4 |
| 97 | C2×C2 | (1+2T+pT2)(1+6T+pT2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.88325852680582646292256615361, −7.57863096296953310313537947065, −7.16786350306497184470487891244, −6.94671668628964351262283859265, −6.26804644643691712661870554994, −5.81991575287185315972703839374, −5.32177139762261023814575475266, −4.77833801709248731889717663410, −4.44859857245519312909598910455, −3.83770466673913712729436913482, −2.99254449026549086361235189107, −2.55716925504772308443173029215, −2.19853647454185692756516131377, −1.19705306068655836886154729814, 0,
1.19705306068655836886154729814, 2.19853647454185692756516131377, 2.55716925504772308443173029215, 2.99254449026549086361235189107, 3.83770466673913712729436913482, 4.44859857245519312909598910455, 4.77833801709248731889717663410, 5.32177139762261023814575475266, 5.81991575287185315972703839374, 6.26804644643691712661870554994, 6.94671668628964351262283859265, 7.16786350306497184470487891244, 7.57863096296953310313537947065, 7.88325852680582646292256615361