Properties

Label 4-855e2-1.1-c1e2-0-11
Degree $4$
Conductor $731025$
Sign $-1$
Analytic cond. $46.6107$
Root an. cond. $2.61289$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4-s − 8·13-s − 3·16-s + 4·19-s − 25-s + 8·37-s + 8·43-s + 2·49-s − 8·52-s + 4·61-s − 7·64-s − 16·67-s + 4·73-s + 4·76-s − 8·97-s − 100-s − 32·109-s + 6·121-s + 127-s + 131-s + 137-s + 139-s + 8·148-s + 149-s + 151-s + 157-s + 163-s + ⋯
L(s)  = 1  + 1/2·4-s − 2.21·13-s − 3/4·16-s + 0.917·19-s − 1/5·25-s + 1.31·37-s + 1.21·43-s + 2/7·49-s − 1.10·52-s + 0.512·61-s − 7/8·64-s − 1.95·67-s + 0.468·73-s + 0.458·76-s − 0.812·97-s − 0.0999·100-s − 3.06·109-s + 6/11·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.657·148-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 731025 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 731025 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(731025\)    =    \(3^{4} \cdot 5^{2} \cdot 19^{2}\)
Sign: $-1$
Analytic conductor: \(46.6107\)
Root analytic conductor: \(2.61289\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 731025,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
5$C_2$ \( 1 + T^{2} \)
19$C_2$ \( 1 - 4 T + p T^{2} \)
good2$C_2^2$ \( 1 - T^{2} + p^{2} T^{4} \)
7$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
11$C_2^2$ \( 1 - 6 T^{2} + p^{2} T^{4} \)
13$C_2$$\times$$C_2$ \( ( 1 + 2 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
17$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
23$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
31$C_2$ \( ( 1 + p T^{2} )^{2} \)
37$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
41$C_2^2$ \( 1 - 50 T^{2} + p^{2} T^{4} \)
43$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + p T^{2} ) \)
47$C_2^2$ \( 1 - 46 T^{2} + p^{2} T^{4} \)
53$C_2^2$ \( 1 - 74 T^{2} + p^{2} T^{4} \)
59$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
61$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
67$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 16 T + p T^{2} ) \)
71$C_2^2$ \( 1 - 50 T^{2} + p^{2} T^{4} \)
73$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
83$C_2^2$ \( 1 + 90 T^{2} + p^{2} T^{4} \)
89$C_2^2$ \( 1 + 46 T^{2} + p^{2} T^{4} \)
97$C_2$$\times$$C_2$ \( ( 1 + 2 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.88325852680582646292256615361, −7.57863096296953310313537947065, −7.16786350306497184470487891244, −6.94671668628964351262283859265, −6.26804644643691712661870554994, −5.81991575287185315972703839374, −5.32177139762261023814575475266, −4.77833801709248731889717663410, −4.44859857245519312909598910455, −3.83770466673913712729436913482, −2.99254449026549086361235189107, −2.55716925504772308443173029215, −2.19853647454185692756516131377, −1.19705306068655836886154729814, 0, 1.19705306068655836886154729814, 2.19853647454185692756516131377, 2.55716925504772308443173029215, 2.99254449026549086361235189107, 3.83770466673913712729436913482, 4.44859857245519312909598910455, 4.77833801709248731889717663410, 5.32177139762261023814575475266, 5.81991575287185315972703839374, 6.26804644643691712661870554994, 6.94671668628964351262283859265, 7.16786350306497184470487891244, 7.57863096296953310313537947065, 7.88325852680582646292256615361

Graph of the $Z$-function along the critical line