L(s) = 1 | + 4-s − 8·13-s − 3·16-s + 4·19-s − 25-s + 8·37-s + 8·43-s + 2·49-s − 8·52-s + 4·61-s − 7·64-s − 16·67-s + 4·73-s + 4·76-s − 8·97-s − 100-s − 32·109-s + 6·121-s + 127-s + 131-s + 137-s + 139-s + 8·148-s + 149-s + 151-s + 157-s + 163-s + ⋯ |
L(s) = 1 | + 1/2·4-s − 2.21·13-s − 3/4·16-s + 0.917·19-s − 1/5·25-s + 1.31·37-s + 1.21·43-s + 2/7·49-s − 1.10·52-s + 0.512·61-s − 7/8·64-s − 1.95·67-s + 0.468·73-s + 0.458·76-s − 0.812·97-s − 0.0999·100-s − 3.06·109-s + 6/11·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.657·148-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 731025 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 731025 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $\Gal(F_p)$ | $F_p(T)$ |
---|
bad | 3 | | \( 1 \) |
| 5 | $C_2$ | \( 1 + T^{2} \) |
| 19 | $C_2$ | \( 1 - 4 T + p T^{2} \) |
good | 2 | $C_2^2$ | \( 1 - T^{2} + p^{2} T^{4} \) |
| 7 | $C_2$ | \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) |
| 11 | $C_2^2$ | \( 1 - 6 T^{2} + p^{2} T^{4} \) |
| 13 | $C_2$$\times$$C_2$ | \( ( 1 + 2 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) |
| 17 | $C_2^2$ | \( 1 + 2 T^{2} + p^{2} T^{4} \) |
| 23 | $C_2^2$ | \( 1 + 2 T^{2} + p^{2} T^{4} \) |
| 29 | $C_2$ | \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) |
| 31 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 37 | $C_2$$\times$$C_2$ | \( ( 1 - 10 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) |
| 41 | $C_2^2$ | \( 1 - 50 T^{2} + p^{2} T^{4} \) |
| 43 | $C_2$$\times$$C_2$ | \( ( 1 - 8 T + p T^{2} )( 1 + p T^{2} ) \) |
| 47 | $C_2^2$ | \( 1 - 46 T^{2} + p^{2} T^{4} \) |
| 53 | $C_2^2$ | \( 1 - 74 T^{2} + p^{2} T^{4} \) |
| 59 | $C_2$ | \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \) |
| 61 | $C_2$ | \( ( 1 - 2 T + p T^{2} )^{2} \) |
| 67 | $C_2$$\times$$C_2$ | \( ( 1 + p T^{2} )( 1 + 16 T + p T^{2} ) \) |
| 71 | $C_2^2$ | \( 1 - 50 T^{2} + p^{2} T^{4} \) |
| 73 | $C_2$ | \( ( 1 - 2 T + p T^{2} )^{2} \) |
| 79 | $C_2$ | \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) |
| 83 | $C_2^2$ | \( 1 + 90 T^{2} + p^{2} T^{4} \) |
| 89 | $C_2^2$ | \( 1 + 46 T^{2} + p^{2} T^{4} \) |
| 97 | $C_2$$\times$$C_2$ | \( ( 1 + 2 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) |
show more | | |
show less | | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.88325852680582646292256615361, −7.57863096296953310313537947065, −7.16786350306497184470487891244, −6.94671668628964351262283859265, −6.26804644643691712661870554994, −5.81991575287185315972703839374, −5.32177139762261023814575475266, −4.77833801709248731889717663410, −4.44859857245519312909598910455, −3.83770466673913712729436913482, −2.99254449026549086361235189107, −2.55716925504772308443173029215, −2.19853647454185692756516131377, −1.19705306068655836886154729814, 0,
1.19705306068655836886154729814, 2.19853647454185692756516131377, 2.55716925504772308443173029215, 2.99254449026549086361235189107, 3.83770466673913712729436913482, 4.44859857245519312909598910455, 4.77833801709248731889717663410, 5.32177139762261023814575475266, 5.81991575287185315972703839374, 6.26804644643691712661870554994, 6.94671668628964351262283859265, 7.16786350306497184470487891244, 7.57863096296953310313537947065, 7.88325852680582646292256615361