L(s) = 1 | + 3·4-s − 4·5-s − 4·11-s + 5·16-s − 2·19-s − 12·20-s + 11·25-s − 12·29-s − 8·31-s − 4·41-s − 12·44-s + 10·49-s + 16·55-s − 20·61-s + 3·64-s + 16·71-s − 6·76-s + 16·79-s − 20·80-s + 20·89-s + 8·95-s + 33·100-s + 12·109-s − 36·116-s − 10·121-s − 24·124-s − 24·125-s + ⋯ |
L(s) = 1 | + 3/2·4-s − 1.78·5-s − 1.20·11-s + 5/4·16-s − 0.458·19-s − 2.68·20-s + 11/5·25-s − 2.22·29-s − 1.43·31-s − 0.624·41-s − 1.80·44-s + 10/7·49-s + 2.15·55-s − 2.56·61-s + 3/8·64-s + 1.89·71-s − 0.688·76-s + 1.80·79-s − 2.23·80-s + 2.11·89-s + 0.820·95-s + 3.29·100-s + 1.14·109-s − 3.34·116-s − 0.909·121-s − 2.15·124-s − 2.14·125-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 731025 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 731025 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.169370054\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.169370054\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $\Gal(F_p)$ | $F_p(T)$ |
---|
bad | 3 | | \( 1 \) |
| 5 | $C_2$ | \( 1 + 4 T + p T^{2} \) |
| 19 | $C_1$ | \( ( 1 + T )^{2} \) |
good | 2 | $C_2^2$ | \( 1 - 3 T^{2} + p^{2} T^{4} \) |
| 7 | $C_2^2$ | \( 1 - 10 T^{2} + p^{2} T^{4} \) |
| 11 | $C_2$ | \( ( 1 + 2 T + p T^{2} )^{2} \) |
| 13 | $C_2^2$ | \( 1 - 22 T^{2} + p^{2} T^{4} \) |
| 17 | $C_2$ | \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) |
| 23 | $C_2$ | \( ( 1 - p T^{2} )^{2} \) |
| 29 | $C_2$ | \( ( 1 + 6 T + p T^{2} )^{2} \) |
| 31 | $C_2$ | \( ( 1 + 4 T + p T^{2} )^{2} \) |
| 37 | $C_2$ | \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \) |
| 41 | $C_2$ | \( ( 1 + 2 T + p T^{2} )^{2} \) |
| 43 | $C_2^2$ | \( 1 + 14 T^{2} + p^{2} T^{4} \) |
| 47 | $C_2$ | \( ( 1 - p T^{2} )^{2} \) |
| 53 | $C_2^2$ | \( 1 - 6 T^{2} + p^{2} T^{4} \) |
| 59 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 61 | $C_2$ | \( ( 1 + 10 T + p T^{2} )^{2} \) |
| 67 | $C_2^2$ | \( 1 - 118 T^{2} + p^{2} T^{4} \) |
| 71 | $C_2$ | \( ( 1 - 8 T + p T^{2} )^{2} \) |
| 73 | $C_2^2$ | \( 1 - 130 T^{2} + p^{2} T^{4} \) |
| 79 | $C_2$ | \( ( 1 - 8 T + p T^{2} )^{2} \) |
| 83 | $C_2^2$ | \( 1 - 22 T^{2} + p^{2} T^{4} \) |
| 89 | $C_2$ | \( ( 1 - 10 T + p T^{2} )^{2} \) |
| 97 | $C_2$ | \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) |
show more | | |
show less | | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.79825486131797391212962993649, −10.28861374002305199843058850931, −9.422755247394498177531821990707, −9.128616988427608653322791127689, −8.619296314052961747359287112903, −7.905911542458527280977634980468, −7.85720717402839161488270301940, −7.36596128272417927145266405831, −7.24480507230017162053532898912, −6.58309485197631130609406322773, −6.20532620623201522542730246763, −5.41736537745405259602797701921, −5.28509586863728655778752439984, −4.45431662823273891089033482771, −3.96246734792274788932724653669, −3.32898224247665400544275299909, −3.13914195681282117764075202651, −2.19232002144848551942770727194, −1.87447109145379178149974946641, −0.49308327442812810118920035591,
0.49308327442812810118920035591, 1.87447109145379178149974946641, 2.19232002144848551942770727194, 3.13914195681282117764075202651, 3.32898224247665400544275299909, 3.96246734792274788932724653669, 4.45431662823273891089033482771, 5.28509586863728655778752439984, 5.41736537745405259602797701921, 6.20532620623201522542730246763, 6.58309485197631130609406322773, 7.24480507230017162053532898912, 7.36596128272417927145266405831, 7.85720717402839161488270301940, 7.905911542458527280977634980468, 8.619296314052961747359287112903, 9.128616988427608653322791127689, 9.422755247394498177531821990707, 10.28861374002305199843058850931, 10.79825486131797391212962993649