L(s) = 1 | + 3·4-s − 4·5-s − 4·11-s + 5·16-s − 2·19-s − 12·20-s + 11·25-s − 12·29-s − 8·31-s − 4·41-s − 12·44-s + 10·49-s + 16·55-s − 20·61-s + 3·64-s + 16·71-s − 6·76-s + 16·79-s − 20·80-s + 20·89-s + 8·95-s + 33·100-s + 12·109-s − 36·116-s − 10·121-s − 24·124-s − 24·125-s + ⋯ |
L(s) = 1 | + 3/2·4-s − 1.78·5-s − 1.20·11-s + 5/4·16-s − 0.458·19-s − 2.68·20-s + 11/5·25-s − 2.22·29-s − 1.43·31-s − 0.624·41-s − 1.80·44-s + 10/7·49-s + 2.15·55-s − 2.56·61-s + 3/8·64-s + 1.89·71-s − 0.688·76-s + 1.80·79-s − 2.23·80-s + 2.11·89-s + 0.820·95-s + 3.29·100-s + 1.14·109-s − 3.34·116-s − 0.909·121-s − 2.15·124-s − 2.14·125-s + ⋯ |
Λ(s)=(=(731025s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(731025s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
731025
= 34⋅52⋅192
|
Sign: |
1
|
Analytic conductor: |
46.6107 |
Root analytic conductor: |
2.61289 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 731025, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
1.169370054 |
L(21) |
≈ |
1.169370054 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | | 1 |
| 5 | C2 | 1+4T+pT2 |
| 19 | C1 | (1+T)2 |
good | 2 | C22 | 1−3T2+p2T4 |
| 7 | C22 | 1−10T2+p2T4 |
| 11 | C2 | (1+2T+pT2)2 |
| 13 | C22 | 1−22T2+p2T4 |
| 17 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 23 | C2 | (1−pT2)2 |
| 29 | C2 | (1+6T+pT2)2 |
| 31 | C2 | (1+4T+pT2)2 |
| 37 | C2 | (1−12T+pT2)(1+12T+pT2) |
| 41 | C2 | (1+2T+pT2)2 |
| 43 | C22 | 1+14T2+p2T4 |
| 47 | C2 | (1−pT2)2 |
| 53 | C22 | 1−6T2+p2T4 |
| 59 | C2 | (1+pT2)2 |
| 61 | C2 | (1+10T+pT2)2 |
| 67 | C22 | 1−118T2+p2T4 |
| 71 | C2 | (1−8T+pT2)2 |
| 73 | C22 | 1−130T2+p2T4 |
| 79 | C2 | (1−8T+pT2)2 |
| 83 | C22 | 1−22T2+p2T4 |
| 89 | C2 | (1−10T+pT2)2 |
| 97 | C2 | (1−8T+pT2)(1+8T+pT2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.79825486131797391212962993649, −10.28861374002305199843058850931, −9.422755247394498177531821990707, −9.128616988427608653322791127689, −8.619296314052961747359287112903, −7.905911542458527280977634980468, −7.85720717402839161488270301940, −7.36596128272417927145266405831, −7.24480507230017162053532898912, −6.58309485197631130609406322773, −6.20532620623201522542730246763, −5.41736537745405259602797701921, −5.28509586863728655778752439984, −4.45431662823273891089033482771, −3.96246734792274788932724653669, −3.32898224247665400544275299909, −3.13914195681282117764075202651, −2.19232002144848551942770727194, −1.87447109145379178149974946641, −0.49308327442812810118920035591,
0.49308327442812810118920035591, 1.87447109145379178149974946641, 2.19232002144848551942770727194, 3.13914195681282117764075202651, 3.32898224247665400544275299909, 3.96246734792274788932724653669, 4.45431662823273891089033482771, 5.28509586863728655778752439984, 5.41736537745405259602797701921, 6.20532620623201522542730246763, 6.58309485197631130609406322773, 7.24480507230017162053532898912, 7.36596128272417927145266405831, 7.85720717402839161488270301940, 7.905911542458527280977634980468, 8.619296314052961747359287112903, 9.128616988427608653322791127689, 9.422755247394498177531821990707, 10.28861374002305199843058850931, 10.79825486131797391212962993649