Properties

Label 4-855e2-1.1-c0e2-0-1
Degree $4$
Conductor $731025$
Sign $1$
Analytic cond. $0.182073$
Root an. cond. $0.653223$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s + 4-s − 5-s − 6-s − 2·8-s + 10-s + 11-s + 12-s − 13-s − 15-s + 2·16-s + 2·19-s − 20-s − 22-s − 2·24-s + 26-s − 27-s + 30-s − 2·32-s + 33-s + 2·37-s − 2·38-s − 39-s + 2·40-s + 44-s + 2·48-s + ⋯
L(s)  = 1  − 2-s + 3-s + 4-s − 5-s − 6-s − 2·8-s + 10-s + 11-s + 12-s − 13-s − 15-s + 2·16-s + 2·19-s − 20-s − 22-s − 2·24-s + 26-s − 27-s + 30-s − 2·32-s + 33-s + 2·37-s − 2·38-s − 39-s + 2·40-s + 44-s + 2·48-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 731025 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 731025 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(731025\)    =    \(3^{4} \cdot 5^{2} \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(0.182073\)
Root analytic conductor: \(0.653223\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 731025,\ (\ :0, 0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.6197750068\)
\(L(\frac12)\) \(\approx\) \(0.6197750068\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_2$ \( 1 - T + T^{2} \)
5$C_2$ \( 1 + T + T^{2} \)
19$C_1$ \( ( 1 - T )^{2} \)
good2$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 - T + T^{2} ) \)
7$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
11$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
13$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 - T + T^{2} ) \)
17$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
23$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
29$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
31$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
37$C_2$ \( ( 1 - T + T^{2} )^{2} \)
41$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
43$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
47$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
53$C_2$ \( ( 1 - T + T^{2} )^{2} \)
59$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
61$C_2$ \( ( 1 + T + T^{2} )^{2} \)
67$C_2$ \( ( 1 - T + T^{2} )^{2} \)
71$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
73$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
79$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
83$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
89$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
97$C_2$ \( ( 1 - T + T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.43110305780675066030312246768, −9.868351095495537992763089265994, −9.503887657488290941450810624542, −9.432149969288258726472015327291, −8.968412486621384362536473701498, −8.477507206788408641879294532296, −8.118696818140407307513335041412, −7.72873036252335400225208718436, −7.21425743079743222797291623599, −7.20878344629677365277336471919, −6.22175325819062784340835775617, −6.12109368317711078851245996097, −5.36499606257001995336925973340, −4.85841572712301605428615337350, −3.85018869333763373901578547749, −3.74856848021277261431932612987, −2.92812338595745336661144565351, −2.79417238625653623392222431050, −1.97736312379105568042916221952, −0.910952507530333710820793795314, 0.910952507530333710820793795314, 1.97736312379105568042916221952, 2.79417238625653623392222431050, 2.92812338595745336661144565351, 3.74856848021277261431932612987, 3.85018869333763373901578547749, 4.85841572712301605428615337350, 5.36499606257001995336925973340, 6.12109368317711078851245996097, 6.22175325819062784340835775617, 7.20878344629677365277336471919, 7.21425743079743222797291623599, 7.72873036252335400225208718436, 8.118696818140407307513335041412, 8.477507206788408641879294532296, 8.968412486621384362536473701498, 9.432149969288258726472015327291, 9.503887657488290941450810624542, 9.868351095495537992763089265994, 10.43110305780675066030312246768

Graph of the $Z$-function along the critical line