Properties

Label 4-8550e2-1.1-c1e2-0-7
Degree $4$
Conductor $73102500$
Sign $1$
Analytic cond. $4661.07$
Root an. cond. $8.26269$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 3·4-s + 6·7-s + 4·8-s + 6·13-s + 12·14-s + 5·16-s − 2·17-s − 2·19-s − 10·23-s + 12·26-s + 18·28-s + 6·29-s + 4·31-s + 6·32-s − 4·34-s − 4·38-s + 12·43-s − 20·46-s + 15·49-s + 18·52-s + 6·53-s + 24·56-s + 12·58-s + 6·59-s + 20·61-s + 8·62-s + ⋯
L(s)  = 1  + 1.41·2-s + 3/2·4-s + 2.26·7-s + 1.41·8-s + 1.66·13-s + 3.20·14-s + 5/4·16-s − 0.485·17-s − 0.458·19-s − 2.08·23-s + 2.35·26-s + 3.40·28-s + 1.11·29-s + 0.718·31-s + 1.06·32-s − 0.685·34-s − 0.648·38-s + 1.82·43-s − 2.94·46-s + 15/7·49-s + 2.49·52-s + 0.824·53-s + 3.20·56-s + 1.57·58-s + 0.781·59-s + 2.56·61-s + 1.01·62-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 73102500 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 73102500 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(73102500\)    =    \(2^{2} \cdot 3^{4} \cdot 5^{4} \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(4661.07\)
Root analytic conductor: \(8.26269\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 73102500,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(16.97284872\)
\(L(\frac12)\) \(\approx\) \(16.97284872\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 - T )^{2} \)
3 \( 1 \)
5 \( 1 \)
19$C_1$ \( ( 1 + T )^{2} \)
good7$D_{4}$ \( 1 - 6 T + 3 p T^{2} - 6 p T^{3} + p^{2} T^{4} \)
11$C_2^2$ \( 1 + 20 T^{2} + p^{2} T^{4} \)
13$D_{4}$ \( 1 - 6 T + 27 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
17$C_2$ \( ( 1 + T + p T^{2} )^{2} \)
23$D_{4}$ \( 1 + 10 T + 53 T^{2} + 10 p T^{3} + p^{2} T^{4} \)
29$D_{4}$ \( 1 - 6 T + 59 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
31$D_{4}$ \( 1 - 4 T + 48 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
37$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
41$C_2^2$ \( 1 + 64 T^{2} + p^{2} T^{4} \)
43$D_{4}$ \( 1 - 12 T + 104 T^{2} - 12 p T^{3} + p^{2} T^{4} \)
47$C_2$ \( ( 1 + p T^{2} )^{2} \)
53$D_{4}$ \( 1 - 6 T + 43 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
59$D_{4}$ \( 1 - 6 T + 29 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
61$D_{4}$ \( 1 - 20 T + 204 T^{2} - 20 p T^{3} + p^{2} T^{4} \)
67$D_{4}$ \( 1 - 18 T + 197 T^{2} - 18 p T^{3} + p^{2} T^{4} \)
71$D_{4}$ \( 1 - 24 T + 4 p T^{2} - 24 p T^{3} + p^{2} T^{4} \)
73$D_{4}$ \( 1 - 6 T + 83 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
79$C_4$ \( 1 - 4 T + 90 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
83$D_{4}$ \( 1 + 12 T + 130 T^{2} + 12 p T^{3} + p^{2} T^{4} \)
89$C_2^2$ \( 1 + 128 T^{2} + p^{2} T^{4} \)
97$D_{4}$ \( 1 + 12 T + 198 T^{2} + 12 p T^{3} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.916198572879353642813300380482, −7.908348515390718593603931495463, −6.97283679067666865370931078098, −6.90887708408965047979866863337, −6.38626063195253612822281471128, −6.31701654619386153804348470004, −5.62964146597898368826261347087, −5.55814047309776613225682615586, −5.01576708376672632726759356209, −5.00485273216513622461034039567, −4.20467668668607205994053930669, −4.17580433616505669081611166662, −3.78585933314799342505132112432, −3.72324330251560670835138603376, −2.65624352072039710110842186887, −2.51612897798450994033934438120, −2.08197217236639860443911343436, −1.72455973947737535497831794449, −1.10142381880238312606238711056, −0.803923554419488282220457854311, 0.803923554419488282220457854311, 1.10142381880238312606238711056, 1.72455973947737535497831794449, 2.08197217236639860443911343436, 2.51612897798450994033934438120, 2.65624352072039710110842186887, 3.72324330251560670835138603376, 3.78585933314799342505132112432, 4.17580433616505669081611166662, 4.20467668668607205994053930669, 5.00485273216513622461034039567, 5.01576708376672632726759356209, 5.55814047309776613225682615586, 5.62964146597898368826261347087, 6.31701654619386153804348470004, 6.38626063195253612822281471128, 6.90887708408965047979866863337, 6.97283679067666865370931078098, 7.908348515390718593603931495463, 7.916198572879353642813300380482

Graph of the $Z$-function along the critical line