L(s) = 1 | + 2·2-s + 3·4-s + 6·7-s + 4·8-s + 6·13-s + 12·14-s + 5·16-s − 2·17-s − 2·19-s − 10·23-s + 12·26-s + 18·28-s + 6·29-s + 4·31-s + 6·32-s − 4·34-s − 4·38-s + 12·43-s − 20·46-s + 15·49-s + 18·52-s + 6·53-s + 24·56-s + 12·58-s + 6·59-s + 20·61-s + 8·62-s + ⋯ |
L(s) = 1 | + 1.41·2-s + 3/2·4-s + 2.26·7-s + 1.41·8-s + 1.66·13-s + 3.20·14-s + 5/4·16-s − 0.485·17-s − 0.458·19-s − 2.08·23-s + 2.35·26-s + 3.40·28-s + 1.11·29-s + 0.718·31-s + 1.06·32-s − 0.685·34-s − 0.648·38-s + 1.82·43-s − 2.94·46-s + 15/7·49-s + 2.49·52-s + 0.824·53-s + 3.20·56-s + 1.57·58-s + 0.781·59-s + 2.56·61-s + 1.01·62-s + ⋯ |
Λ(s)=(=(73102500s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(73102500s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
73102500
= 22⋅34⋅54⋅192
|
Sign: |
1
|
Analytic conductor: |
4661.07 |
Root analytic conductor: |
8.26269 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 73102500, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
16.97284872 |
L(21) |
≈ |
16.97284872 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C1 | (1−T)2 |
| 3 | | 1 |
| 5 | | 1 |
| 19 | C1 | (1+T)2 |
good | 7 | D4 | 1−6T+3pT2−6pT3+p2T4 |
| 11 | C22 | 1+20T2+p2T4 |
| 13 | D4 | 1−6T+27T2−6pT3+p2T4 |
| 17 | C2 | (1+T+pT2)2 |
| 23 | D4 | 1+10T+53T2+10pT3+p2T4 |
| 29 | D4 | 1−6T+59T2−6pT3+p2T4 |
| 31 | D4 | 1−4T+48T2−4pT3+p2T4 |
| 37 | C22 | 1+2T2+p2T4 |
| 41 | C22 | 1+64T2+p2T4 |
| 43 | D4 | 1−12T+104T2−12pT3+p2T4 |
| 47 | C2 | (1+pT2)2 |
| 53 | D4 | 1−6T+43T2−6pT3+p2T4 |
| 59 | D4 | 1−6T+29T2−6pT3+p2T4 |
| 61 | D4 | 1−20T+204T2−20pT3+p2T4 |
| 67 | D4 | 1−18T+197T2−18pT3+p2T4 |
| 71 | D4 | 1−24T+4pT2−24pT3+p2T4 |
| 73 | D4 | 1−6T+83T2−6pT3+p2T4 |
| 79 | C4 | 1−4T+90T2−4pT3+p2T4 |
| 83 | D4 | 1+12T+130T2+12pT3+p2T4 |
| 89 | C22 | 1+128T2+p2T4 |
| 97 | D4 | 1+12T+198T2+12pT3+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.916198572879353642813300380482, −7.908348515390718593603931495463, −6.97283679067666865370931078098, −6.90887708408965047979866863337, −6.38626063195253612822281471128, −6.31701654619386153804348470004, −5.62964146597898368826261347087, −5.55814047309776613225682615586, −5.01576708376672632726759356209, −5.00485273216513622461034039567, −4.20467668668607205994053930669, −4.17580433616505669081611166662, −3.78585933314799342505132112432, −3.72324330251560670835138603376, −2.65624352072039710110842186887, −2.51612897798450994033934438120, −2.08197217236639860443911343436, −1.72455973947737535497831794449, −1.10142381880238312606238711056, −0.803923554419488282220457854311,
0.803923554419488282220457854311, 1.10142381880238312606238711056, 1.72455973947737535497831794449, 2.08197217236639860443911343436, 2.51612897798450994033934438120, 2.65624352072039710110842186887, 3.72324330251560670835138603376, 3.78585933314799342505132112432, 4.17580433616505669081611166662, 4.20467668668607205994053930669, 5.00485273216513622461034039567, 5.01576708376672632726759356209, 5.55814047309776613225682615586, 5.62964146597898368826261347087, 6.31701654619386153804348470004, 6.38626063195253612822281471128, 6.90887708408965047979866863337, 6.97283679067666865370931078098, 7.908348515390718593603931495463, 7.916198572879353642813300380482