Properties

Label 4-810e2-1.1-c3e2-0-20
Degree $4$
Conductor $656100$
Sign $1$
Analytic cond. $2284.03$
Root an. cond. $6.91314$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s − 5·5-s + 4·7-s − 8·8-s − 10·10-s − 48·11-s − 2·13-s + 8·14-s − 16·16-s + 228·17-s + 280·19-s − 96·22-s + 72·23-s − 4·26-s + 210·29-s − 272·31-s + 456·34-s − 20·35-s − 668·37-s + 560·38-s + 40·40-s − 198·41-s + 268·43-s + 144·46-s + 216·47-s + 343·49-s + 156·53-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.447·5-s + 0.215·7-s − 0.353·8-s − 0.316·10-s − 1.31·11-s − 0.0426·13-s + 0.152·14-s − 1/4·16-s + 3.25·17-s + 3.38·19-s − 0.930·22-s + 0.652·23-s − 0.0301·26-s + 1.34·29-s − 1.57·31-s + 2.30·34-s − 0.0965·35-s − 2.96·37-s + 2.39·38-s + 0.158·40-s − 0.754·41-s + 0.950·43-s + 0.461·46-s + 0.670·47-s + 49-s + 0.404·53-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 656100 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 656100 ^{s/2} \, \Gamma_{\C}(s+3/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(656100\)    =    \(2^{2} \cdot 3^{8} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(2284.03\)
Root analytic conductor: \(6.91314\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 656100,\ (\ :3/2, 3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(4.870273790\)
\(L(\frac12)\) \(\approx\) \(4.870273790\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 - p T + p^{2} T^{2} \)
3 \( 1 \)
5$C_2$ \( 1 + p T + p^{2} T^{2} \)
good7$C_2^2$ \( 1 - 4 T - 327 T^{2} - 4 p^{3} T^{3} + p^{6} T^{4} \)
11$C_2^2$ \( 1 + 48 T + 973 T^{2} + 48 p^{3} T^{3} + p^{6} T^{4} \)
13$C_2^2$ \( 1 + 2 T - 2193 T^{2} + 2 p^{3} T^{3} + p^{6} T^{4} \)
17$C_2$ \( ( 1 - 114 T + p^{3} T^{2} )^{2} \)
19$C_2$ \( ( 1 - 140 T + p^{3} T^{2} )^{2} \)
23$C_2^2$ \( 1 - 72 T - 6983 T^{2} - 72 p^{3} T^{3} + p^{6} T^{4} \)
29$C_2^2$ \( 1 - 210 T + 19711 T^{2} - 210 p^{3} T^{3} + p^{6} T^{4} \)
31$C_2^2$ \( 1 + 272 T + 44193 T^{2} + 272 p^{3} T^{3} + p^{6} T^{4} \)
37$C_2$ \( ( 1 + 334 T + p^{3} T^{2} )^{2} \)
41$C_2^2$ \( 1 + 198 T - 29717 T^{2} + 198 p^{3} T^{3} + p^{6} T^{4} \)
43$C_2^2$ \( 1 - 268 T - 7683 T^{2} - 268 p^{3} T^{3} + p^{6} T^{4} \)
47$C_2^2$ \( 1 - 216 T - 57167 T^{2} - 216 p^{3} T^{3} + p^{6} T^{4} \)
53$C_2$ \( ( 1 - 78 T + p^{3} T^{2} )^{2} \)
59$C_2^2$ \( 1 - 240 T - 147779 T^{2} - 240 p^{3} T^{3} + p^{6} T^{4} \)
61$C_2^2$ \( 1 + 302 T - 135777 T^{2} + 302 p^{3} T^{3} + p^{6} T^{4} \)
67$C_2^2$ \( 1 + 596 T + 54453 T^{2} + 596 p^{3} T^{3} + p^{6} T^{4} \)
71$C_2$ \( ( 1 - 768 T + p^{3} T^{2} )^{2} \)
73$C_2$ \( ( 1 + 478 T + p^{3} T^{2} )^{2} \)
79$C_2^2$ \( 1 - 640 T - 83439 T^{2} - 640 p^{3} T^{3} + p^{6} T^{4} \)
83$C_2^2$ \( 1 + 348 T - 450683 T^{2} + 348 p^{3} T^{3} + p^{6} T^{4} \)
89$C_2$ \( ( 1 + 210 T + p^{3} T^{2} )^{2} \)
97$C_2^2$ \( 1 - 1534 T + 1440483 T^{2} - 1534 p^{3} T^{3} + p^{6} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.15654237602487405573337490213, −9.880599521252069768472748533219, −9.042345667320217032631065944274, −8.994855848758337873062899141920, −8.224241849301056216918337304864, −7.69031941439357464882675871816, −7.49682792104555461771904144127, −7.34696231272868379192233176262, −6.66862086101920496331719031501, −5.67861809605018058164066081574, −5.49414733823382487935011348593, −5.15419101051553368630762217472, −5.12196319973062219200578936599, −4.07213867728197129802241045458, −3.45053147291626498129051716096, −3.11130975132747923062393873450, −3.02986739073575827442992807115, −1.83626307391308889629290670794, −1.03960538447744075143387245361, −0.64242935669352938397950764797, 0.64242935669352938397950764797, 1.03960538447744075143387245361, 1.83626307391308889629290670794, 3.02986739073575827442992807115, 3.11130975132747923062393873450, 3.45053147291626498129051716096, 4.07213867728197129802241045458, 5.12196319973062219200578936599, 5.15419101051553368630762217472, 5.49414733823382487935011348593, 5.67861809605018058164066081574, 6.66862086101920496331719031501, 7.34696231272868379192233176262, 7.49682792104555461771904144127, 7.69031941439357464882675871816, 8.224241849301056216918337304864, 8.994855848758337873062899141920, 9.042345667320217032631065944274, 9.880599521252069768472748533219, 10.15654237602487405573337490213

Graph of the $Z$-function along the critical line