Properties

Label 4-810e2-1.1-c3e2-0-20
Degree 44
Conductor 656100656100
Sign 11
Analytic cond. 2284.032284.03
Root an. cond. 6.913146.91314
Motivic weight 33
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank 00

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s − 5·5-s + 4·7-s − 8·8-s − 10·10-s − 48·11-s − 2·13-s + 8·14-s − 16·16-s + 228·17-s + 280·19-s − 96·22-s + 72·23-s − 4·26-s + 210·29-s − 272·31-s + 456·34-s − 20·35-s − 668·37-s + 560·38-s + 40·40-s − 198·41-s + 268·43-s + 144·46-s + 216·47-s + 343·49-s + 156·53-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.447·5-s + 0.215·7-s − 0.353·8-s − 0.316·10-s − 1.31·11-s − 0.0426·13-s + 0.152·14-s − 1/4·16-s + 3.25·17-s + 3.38·19-s − 0.930·22-s + 0.652·23-s − 0.0301·26-s + 1.34·29-s − 1.57·31-s + 2.30·34-s − 0.0965·35-s − 2.96·37-s + 2.39·38-s + 0.158·40-s − 0.754·41-s + 0.950·43-s + 0.461·46-s + 0.670·47-s + 49-s + 0.404·53-s + ⋯

Functional equation

Λ(s)=(656100s/2ΓC(s)2L(s)=(Λ(4s)\begin{aligned}\Lambda(s)=\mathstrut & 656100 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}
Λ(s)=(656100s/2ΓC(s+3/2)2L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 656100 ^{s/2} \, \Gamma_{\C}(s+3/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}

Invariants

Degree: 44
Conductor: 656100656100    =    2238522^{2} \cdot 3^{8} \cdot 5^{2}
Sign: 11
Analytic conductor: 2284.032284.03
Root analytic conductor: 6.913146.91314
Motivic weight: 33
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: 00
Selberg data: (4, 656100, ( :3/2,3/2), 1)(4,\ 656100,\ (\ :3/2, 3/2),\ 1)

Particular Values

L(2)L(2) \approx 4.8702737904.870273790
L(12)L(\frac12) \approx 4.8702737904.870273790
L(52)L(\frac{5}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppGal(Fp)\Gal(F_p)Fp(T)F_p(T)
bad2C2C_2 1pT+p2T2 1 - p T + p^{2} T^{2}
3 1 1
5C2C_2 1+pT+p2T2 1 + p T + p^{2} T^{2}
good7C22C_2^2 14T327T24p3T3+p6T4 1 - 4 T - 327 T^{2} - 4 p^{3} T^{3} + p^{6} T^{4}
11C22C_2^2 1+48T+973T2+48p3T3+p6T4 1 + 48 T + 973 T^{2} + 48 p^{3} T^{3} + p^{6} T^{4}
13C22C_2^2 1+2T2193T2+2p3T3+p6T4 1 + 2 T - 2193 T^{2} + 2 p^{3} T^{3} + p^{6} T^{4}
17C2C_2 (1114T+p3T2)2 ( 1 - 114 T + p^{3} T^{2} )^{2}
19C2C_2 (1140T+p3T2)2 ( 1 - 140 T + p^{3} T^{2} )^{2}
23C22C_2^2 172T6983T272p3T3+p6T4 1 - 72 T - 6983 T^{2} - 72 p^{3} T^{3} + p^{6} T^{4}
29C22C_2^2 1210T+19711T2210p3T3+p6T4 1 - 210 T + 19711 T^{2} - 210 p^{3} T^{3} + p^{6} T^{4}
31C22C_2^2 1+272T+44193T2+272p3T3+p6T4 1 + 272 T + 44193 T^{2} + 272 p^{3} T^{3} + p^{6} T^{4}
37C2C_2 (1+334T+p3T2)2 ( 1 + 334 T + p^{3} T^{2} )^{2}
41C22C_2^2 1+198T29717T2+198p3T3+p6T4 1 + 198 T - 29717 T^{2} + 198 p^{3} T^{3} + p^{6} T^{4}
43C22C_2^2 1268T7683T2268p3T3+p6T4 1 - 268 T - 7683 T^{2} - 268 p^{3} T^{3} + p^{6} T^{4}
47C22C_2^2 1216T57167T2216p3T3+p6T4 1 - 216 T - 57167 T^{2} - 216 p^{3} T^{3} + p^{6} T^{4}
53C2C_2 (178T+p3T2)2 ( 1 - 78 T + p^{3} T^{2} )^{2}
59C22C_2^2 1240T147779T2240p3T3+p6T4 1 - 240 T - 147779 T^{2} - 240 p^{3} T^{3} + p^{6} T^{4}
61C22C_2^2 1+302T135777T2+302p3T3+p6T4 1 + 302 T - 135777 T^{2} + 302 p^{3} T^{3} + p^{6} T^{4}
67C22C_2^2 1+596T+54453T2+596p3T3+p6T4 1 + 596 T + 54453 T^{2} + 596 p^{3} T^{3} + p^{6} T^{4}
71C2C_2 (1768T+p3T2)2 ( 1 - 768 T + p^{3} T^{2} )^{2}
73C2C_2 (1+478T+p3T2)2 ( 1 + 478 T + p^{3} T^{2} )^{2}
79C22C_2^2 1640T83439T2640p3T3+p6T4 1 - 640 T - 83439 T^{2} - 640 p^{3} T^{3} + p^{6} T^{4}
83C22C_2^2 1+348T450683T2+348p3T3+p6T4 1 + 348 T - 450683 T^{2} + 348 p^{3} T^{3} + p^{6} T^{4}
89C2C_2 (1+210T+p3T2)2 ( 1 + 210 T + p^{3} T^{2} )^{2}
97C22C_2^2 11534T+1440483T21534p3T3+p6T4 1 - 1534 T + 1440483 T^{2} - 1534 p^{3} T^{3} + p^{6} T^{4}
show more
show less
   L(s)=p j=14(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−10.15654237602487405573337490213, −9.880599521252069768472748533219, −9.042345667320217032631065944274, −8.994855848758337873062899141920, −8.224241849301056216918337304864, −7.69031941439357464882675871816, −7.49682792104555461771904144127, −7.34696231272868379192233176262, −6.66862086101920496331719031501, −5.67861809605018058164066081574, −5.49414733823382487935011348593, −5.15419101051553368630762217472, −5.12196319973062219200578936599, −4.07213867728197129802241045458, −3.45053147291626498129051716096, −3.11130975132747923062393873450, −3.02986739073575827442992807115, −1.83626307391308889629290670794, −1.03960538447744075143387245361, −0.64242935669352938397950764797, 0.64242935669352938397950764797, 1.03960538447744075143387245361, 1.83626307391308889629290670794, 3.02986739073575827442992807115, 3.11130975132747923062393873450, 3.45053147291626498129051716096, 4.07213867728197129802241045458, 5.12196319973062219200578936599, 5.15419101051553368630762217472, 5.49414733823382487935011348593, 5.67861809605018058164066081574, 6.66862086101920496331719031501, 7.34696231272868379192233176262, 7.49682792104555461771904144127, 7.69031941439357464882675871816, 8.224241849301056216918337304864, 8.994855848758337873062899141920, 9.042345667320217032631065944274, 9.880599521252069768472748533219, 10.15654237602487405573337490213

Graph of the ZZ-function along the critical line