L(s) = 1 | + 2·2-s − 5·5-s + 4·7-s − 8·8-s − 10·10-s − 48·11-s − 2·13-s + 8·14-s − 16·16-s + 228·17-s + 280·19-s − 96·22-s + 72·23-s − 4·26-s + 210·29-s − 272·31-s + 456·34-s − 20·35-s − 668·37-s + 560·38-s + 40·40-s − 198·41-s + 268·43-s + 144·46-s + 216·47-s + 343·49-s + 156·53-s + ⋯ |
L(s) = 1 | + 0.707·2-s − 0.447·5-s + 0.215·7-s − 0.353·8-s − 0.316·10-s − 1.31·11-s − 0.0426·13-s + 0.152·14-s − 1/4·16-s + 3.25·17-s + 3.38·19-s − 0.930·22-s + 0.652·23-s − 0.0301·26-s + 1.34·29-s − 1.57·31-s + 2.30·34-s − 0.0965·35-s − 2.96·37-s + 2.39·38-s + 0.158·40-s − 0.754·41-s + 0.950·43-s + 0.461·46-s + 0.670·47-s + 49-s + 0.404·53-s + ⋯ |
Λ(s)=(=(656100s/2ΓC(s)2L(s)Λ(4−s)
Λ(s)=(=(656100s/2ΓC(s+3/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
656100
= 22⋅38⋅52
|
Sign: |
1
|
Analytic conductor: |
2284.03 |
Root analytic conductor: |
6.91314 |
Motivic weight: |
3 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 656100, ( :3/2,3/2), 1)
|
Particular Values
L(2) |
≈ |
4.870273790 |
L(21) |
≈ |
4.870273790 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C2 | 1−pT+p2T2 |
| 3 | | 1 |
| 5 | C2 | 1+pT+p2T2 |
good | 7 | C22 | 1−4T−327T2−4p3T3+p6T4 |
| 11 | C22 | 1+48T+973T2+48p3T3+p6T4 |
| 13 | C22 | 1+2T−2193T2+2p3T3+p6T4 |
| 17 | C2 | (1−114T+p3T2)2 |
| 19 | C2 | (1−140T+p3T2)2 |
| 23 | C22 | 1−72T−6983T2−72p3T3+p6T4 |
| 29 | C22 | 1−210T+19711T2−210p3T3+p6T4 |
| 31 | C22 | 1+272T+44193T2+272p3T3+p6T4 |
| 37 | C2 | (1+334T+p3T2)2 |
| 41 | C22 | 1+198T−29717T2+198p3T3+p6T4 |
| 43 | C22 | 1−268T−7683T2−268p3T3+p6T4 |
| 47 | C22 | 1−216T−57167T2−216p3T3+p6T4 |
| 53 | C2 | (1−78T+p3T2)2 |
| 59 | C22 | 1−240T−147779T2−240p3T3+p6T4 |
| 61 | C22 | 1+302T−135777T2+302p3T3+p6T4 |
| 67 | C22 | 1+596T+54453T2+596p3T3+p6T4 |
| 71 | C2 | (1−768T+p3T2)2 |
| 73 | C2 | (1+478T+p3T2)2 |
| 79 | C22 | 1−640T−83439T2−640p3T3+p6T4 |
| 83 | C22 | 1+348T−450683T2+348p3T3+p6T4 |
| 89 | C2 | (1+210T+p3T2)2 |
| 97 | C22 | 1−1534T+1440483T2−1534p3T3+p6T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.15654237602487405573337490213, −9.880599521252069768472748533219, −9.042345667320217032631065944274, −8.994855848758337873062899141920, −8.224241849301056216918337304864, −7.69031941439357464882675871816, −7.49682792104555461771904144127, −7.34696231272868379192233176262, −6.66862086101920496331719031501, −5.67861809605018058164066081574, −5.49414733823382487935011348593, −5.15419101051553368630762217472, −5.12196319973062219200578936599, −4.07213867728197129802241045458, −3.45053147291626498129051716096, −3.11130975132747923062393873450, −3.02986739073575827442992807115, −1.83626307391308889629290670794, −1.03960538447744075143387245361, −0.64242935669352938397950764797,
0.64242935669352938397950764797, 1.03960538447744075143387245361, 1.83626307391308889629290670794, 3.02986739073575827442992807115, 3.11130975132747923062393873450, 3.45053147291626498129051716096, 4.07213867728197129802241045458, 5.12196319973062219200578936599, 5.15419101051553368630762217472, 5.49414733823382487935011348593, 5.67861809605018058164066081574, 6.66862086101920496331719031501, 7.34696231272868379192233176262, 7.49682792104555461771904144127, 7.69031941439357464882675871816, 8.224241849301056216918337304864, 8.994855848758337873062899141920, 9.042345667320217032631065944274, 9.880599521252069768472748533219, 10.15654237602487405573337490213