L(s) = 1 | + 5-s + 6·9-s + 25-s + 4·29-s + 12·41-s + 6·45-s − 2·49-s − 4·61-s + 27·81-s − 12·89-s − 12·101-s + 28·109-s − 6·121-s + 125-s + 127-s + 131-s + 137-s + 139-s + 4·145-s + 149-s + 151-s + 157-s + 163-s + 167-s − 22·169-s + 173-s + 179-s + ⋯ |
L(s) = 1 | + 0.447·5-s + 2·9-s + 1/5·25-s + 0.742·29-s + 1.87·41-s + 0.894·45-s − 2/7·49-s − 0.512·61-s + 3·81-s − 1.27·89-s − 1.19·101-s + 2.68·109-s − 0.545·121-s + 0.0894·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.332·145-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 1.69·169-s + 0.0760·173-s + 0.0747·179-s + ⋯ |
Λ(s)=(=(512000s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(512000s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
512000
= 212⋅53
|
Sign: |
1
|
Analytic conductor: |
32.6455 |
Root analytic conductor: |
2.39031 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 512000, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
2.680498993 |
L(21) |
≈ |
2.680498993 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 5 | C1 | 1−T |
good | 3 | C2 | (1−pT2)2 |
| 7 | C22 | 1+2T2+p2T4 |
| 11 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 13 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 17 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 19 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 23 | C22 | 1−30T2+p2T4 |
| 29 | C2 | (1−2T+pT2)2 |
| 31 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 37 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 41 | C2 | (1−6T+pT2)2 |
| 43 | C22 | 1−22T2+p2T4 |
| 47 | C22 | 1−78T2+p2T4 |
| 53 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 59 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 61 | C2 | (1+2T+pT2)2 |
| 67 | C22 | 1−70T2+p2T4 |
| 71 | C2 | (1+pT2)2 |
| 73 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 79 | C2 | (1+pT2)2 |
| 83 | C22 | 1+90T2+p2T4 |
| 89 | C2 | (1+6T+pT2)2 |
| 97 | C2 | (1−14T+pT2)(1+14T+pT2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.596990511932736222144817015338, −7.907341477090996490882333551725, −7.52503145482899774991079550906, −7.22991414319633251811158852213, −6.62065588307934500428137551484, −6.34353768083929153204953611946, −5.76584931651134752447239181230, −5.15483711704418209300479511955, −4.62444226502693542608431003768, −4.25628687112004479506978652093, −3.76293337439488997521798166674, −2.98579170941525266723249785242, −2.30624557105481912795372074779, −1.60242124233434574166321397201, −0.950642266431141237476176657803,
0.950642266431141237476176657803, 1.60242124233434574166321397201, 2.30624557105481912795372074779, 2.98579170941525266723249785242, 3.76293337439488997521798166674, 4.25628687112004479506978652093, 4.62444226502693542608431003768, 5.15483711704418209300479511955, 5.76584931651134752447239181230, 6.34353768083929153204953611946, 6.62065588307934500428137551484, 7.22991414319633251811158852213, 7.52503145482899774991079550906, 7.907341477090996490882333551725, 8.596990511932736222144817015338