L(s) = 1 | + 5-s + 6·9-s + 25-s + 4·29-s + 12·41-s + 6·45-s − 2·49-s − 4·61-s + 27·81-s − 12·89-s − 12·101-s + 28·109-s − 6·121-s + 125-s + 127-s + 131-s + 137-s + 139-s + 4·145-s + 149-s + 151-s + 157-s + 163-s + 167-s − 22·169-s + 173-s + 179-s + ⋯ |
L(s) = 1 | + 0.447·5-s + 2·9-s + 1/5·25-s + 0.742·29-s + 1.87·41-s + 0.894·45-s − 2/7·49-s − 0.512·61-s + 3·81-s − 1.27·89-s − 1.19·101-s + 2.68·109-s − 0.545·121-s + 0.0894·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.332·145-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 1.69·169-s + 0.0760·173-s + 0.0747·179-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 512000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 512000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.680498993\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.680498993\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $\Gal(F_p)$ | $F_p(T)$ |
---|
bad | 2 | | \( 1 \) |
| 5 | $C_1$ | \( 1 - T \) |
good | 3 | $C_2$ | \( ( 1 - p T^{2} )^{2} \) |
| 7 | $C_2^2$ | \( 1 + 2 T^{2} + p^{2} T^{4} \) |
| 11 | $C_2$ | \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) |
| 13 | $C_2$ | \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) |
| 17 | $C_2$ | \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) |
| 19 | $C_2$ | \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) |
| 23 | $C_2^2$ | \( 1 - 30 T^{2} + p^{2} T^{4} \) |
| 29 | $C_2$ | \( ( 1 - 2 T + p T^{2} )^{2} \) |
| 31 | $C_2$ | \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) |
| 37 | $C_2$ | \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) |
| 41 | $C_2$ | \( ( 1 - 6 T + p T^{2} )^{2} \) |
| 43 | $C_2^2$ | \( 1 - 22 T^{2} + p^{2} T^{4} \) |
| 47 | $C_2^2$ | \( 1 - 78 T^{2} + p^{2} T^{4} \) |
| 53 | $C_2$ | \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) |
| 59 | $C_2$ | \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) |
| 61 | $C_2$ | \( ( 1 + 2 T + p T^{2} )^{2} \) |
| 67 | $C_2^2$ | \( 1 - 70 T^{2} + p^{2} T^{4} \) |
| 71 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 73 | $C_2$ | \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) |
| 79 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 83 | $C_2^2$ | \( 1 + 90 T^{2} + p^{2} T^{4} \) |
| 89 | $C_2$ | \( ( 1 + 6 T + p T^{2} )^{2} \) |
| 97 | $C_2$ | \( ( 1 - 14 T + p T^{2} )( 1 + 14 T + p T^{2} ) \) |
show more | | |
show less | | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.596990511932736222144817015338, −7.907341477090996490882333551725, −7.52503145482899774991079550906, −7.22991414319633251811158852213, −6.62065588307934500428137551484, −6.34353768083929153204953611946, −5.76584931651134752447239181230, −5.15483711704418209300479511955, −4.62444226502693542608431003768, −4.25628687112004479506978652093, −3.76293337439488997521798166674, −2.98579170941525266723249785242, −2.30624557105481912795372074779, −1.60242124233434574166321397201, −0.950642266431141237476176657803,
0.950642266431141237476176657803, 1.60242124233434574166321397201, 2.30624557105481912795372074779, 2.98579170941525266723249785242, 3.76293337439488997521798166674, 4.25628687112004479506978652093, 4.62444226502693542608431003768, 5.15483711704418209300479511955, 5.76584931651134752447239181230, 6.34353768083929153204953611946, 6.62065588307934500428137551484, 7.22991414319633251811158852213, 7.52503145482899774991079550906, 7.907341477090996490882333551725, 8.596990511932736222144817015338