Properties

Label 4-7938e2-1.1-c1e2-0-6
Degree $4$
Conductor $63011844$
Sign $1$
Analytic cond. $4017.68$
Root an. cond. $7.96148$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 3·4-s + 4·5-s + 4·8-s + 8·10-s − 2·11-s + 6·13-s + 5·16-s + 14·17-s + 2·19-s + 12·20-s − 4·22-s − 2·23-s + 5·25-s + 12·26-s − 10·29-s − 6·31-s + 6·32-s + 28·34-s + 4·37-s + 4·38-s + 16·40-s + 12·41-s + 4·43-s − 6·44-s − 4·46-s + 6·47-s + ⋯
L(s)  = 1  + 1.41·2-s + 3/2·4-s + 1.78·5-s + 1.41·8-s + 2.52·10-s − 0.603·11-s + 1.66·13-s + 5/4·16-s + 3.39·17-s + 0.458·19-s + 2.68·20-s − 0.852·22-s − 0.417·23-s + 25-s + 2.35·26-s − 1.85·29-s − 1.07·31-s + 1.06·32-s + 4.80·34-s + 0.657·37-s + 0.648·38-s + 2.52·40-s + 1.87·41-s + 0.609·43-s − 0.904·44-s − 0.589·46-s + 0.875·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 63011844 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 63011844 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(63011844\)    =    \(2^{2} \cdot 3^{8} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(4017.68\)
Root analytic conductor: \(7.96148\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 63011844,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(19.48000772\)
\(L(\frac12)\) \(\approx\) \(19.48000772\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 - T )^{2} \)
3 \( 1 \)
7 \( 1 \)
good5$C_2^2$ \( 1 - 4 T + 11 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
11$D_{4}$ \( 1 + 2 T - 4 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
13$C_2^2$ \( 1 - 6 T + 23 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
17$C_2$ \( ( 1 - 7 T + p T^{2} )^{2} \)
19$D_{4}$ \( 1 - 2 T + 36 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
23$D_{4}$ \( 1 + 2 T + 20 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
29$C_2^2$ \( 1 + 10 T + 71 T^{2} + 10 p T^{3} + p^{2} T^{4} \)
31$D_{4}$ \( 1 + 6 T + 44 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
37$D_{4}$ \( 1 - 4 T + 3 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
41$D_{4}$ \( 1 - 12 T + 106 T^{2} - 12 p T^{3} + p^{2} T^{4} \)
43$D_{4}$ \( 1 - 4 T + 78 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
47$D_{4}$ \( 1 - 6 T + 100 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
53$D_{4}$ \( 1 - 12 T + 130 T^{2} - 12 p T^{3} + p^{2} T^{4} \)
59$D_{4}$ \( 1 + 2 T + 92 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
61$D_{4}$ \( 1 - 6 T + 83 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
67$D_{4}$ \( 1 + 10 T + 156 T^{2} + 10 p T^{3} + p^{2} T^{4} \)
71$D_{4}$ \( 1 + 20 T + 230 T^{2} + 20 p T^{3} + p^{2} T^{4} \)
73$D_{4}$ \( 1 + 20 T + 243 T^{2} + 20 p T^{3} + p^{2} T^{4} \)
79$D_{4}$ \( 1 - 6 T + 20 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
83$D_{4}$ \( 1 - 2 T - 76 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
89$D_{4}$ \( 1 - 6 T + 139 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
97$D_{4}$ \( 1 + 8 T + 162 T^{2} + 8 p T^{3} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.63154737740895890823531401902, −7.57712240718078775141091545634, −7.35062694648888552997509807419, −7.06247567973928688257141438554, −6.06279404806978818411957296295, −6.05193986313449556641568717912, −5.84296773517598862317108854069, −5.77623355945256934844047712964, −5.29895056631067527230210061807, −5.21927104765924035335365372707, −4.25793106883908542110472643225, −4.24528162004751063292812752860, −3.55721559993881827530076958212, −3.47672204224157539676236419226, −2.88682126596248651545546716194, −2.68448121379884614987553028818, −1.91446519504405065760906291454, −1.78497048644836576799763715775, −1.19089669879646583597625937337, −0.846087250399229237515631728529, 0.846087250399229237515631728529, 1.19089669879646583597625937337, 1.78497048644836576799763715775, 1.91446519504405065760906291454, 2.68448121379884614987553028818, 2.88682126596248651545546716194, 3.47672204224157539676236419226, 3.55721559993881827530076958212, 4.24528162004751063292812752860, 4.25793106883908542110472643225, 5.21927104765924035335365372707, 5.29895056631067527230210061807, 5.77623355945256934844047712964, 5.84296773517598862317108854069, 6.05193986313449556641568717912, 6.06279404806978818411957296295, 7.06247567973928688257141438554, 7.35062694648888552997509807419, 7.57712240718078775141091545634, 7.63154737740895890823531401902

Graph of the $Z$-function along the critical line